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The concept of coincidence site lattice (CSL) is used in descriptions of geometry

of some intercrystalline boundaries. In face-centered cubic and body-centered

cubic metals, atoms are located at the nodes of lattices, and results concerning

lattice nodes are applicable to atomic sites. One of the criteria for special

boundary configurations is that the boundary passes through a plane with a high

density of coinciding atomic sites. Hence, there is an issue of identification of

such planes. This paper describes a simple and reliable method for determining

the planes with high densities of coinciding lattice nodes. The key elements of

the procedure are the Hermite normal form of an integer matrix and Niggli

reduction of the CSL basis. In its general form, the method is applicable to

arbitrary three-dimensional lattices possessing a common three-dimensional

sublattice. The densest and second-densest planes are determined for low-�
CSLs of cubic lattices.

1. Introduction

The notion of coincidence site lattice (CSL) or the intersection

of two interpenetrating lattices is used in the description of

geometry of interfaces between crystallites. The CSL model is

applied mainly to homophase interfaces (grain boundaries).

Real grain boundaries are affected by many factors (e.g.

impurity segregation), but even if the additional complications

are excluded, the low energy of boundaries cannot be

explained by purely geometric models (Sutton & Balluffi,

1987). On the other hand, geometric models play a significant

role as skeletons supporting physically more realistic

approaches. CSLs and special boundaries play the role of

reference points in the space of possible boundary geometries.

The term ‘site’ in CSL is unfortunate as it can be associated

with an atomic site (Gratias & Portier, 1982), whereas the CSL

concerns coinciding lattice nodes. The text below can be read

with CSL interpreted as the abbreviation for ‘common

sublattice’. Clearly, the atomic coincidence at the boundary is

physically more meaningful than the coincidence of lattices.

However, in the important case of elemental face-centered

cubic (f.c.c.) and body-centered cubic (b.c.c.) metals, atoms are

located at the nodes of cF- and cI-type lattices, respectively. In

effect, results concerning coinciding lattices are applicable to

atomic sites.

CSLs are three-dimensional objects, whereas interfaces are

two-dimensional. A simple geometric premise for a special

two-dimensional configuration is that a boundary plane has a

high planar density of coinciding atomic sites. Thus, assuming

a CSL misorientation between two lattices, there is a question

about lattice planes with a high density of common nodes. In

other words, one looks for planes of CSLs with small areas of
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planar cells. The subject has been discussed in numerous

articles, and methods of determining the planes have been

considered (see, e.g., Brandon et al., 1964; Chalmers & Gleiter,

1971; Goodhew et al., 1978; Wolf, 1992; Acton & Bevis, 1971;

Smith, 1974; Yang, 1982). However, data and results

concerning the planes with a high density of common nodes

are not always correct.

This paper describes a simple and reliable method for

determining the planes with high densities of coinciding lattice

nodes. The method is applied to coinciding cubic lattices, and

the densest and second-densest planes are listed for high-

coincidence misorientations. At the end, the method is

generalized to arbitrary, possibly different, three-dimensional

lattices having a common three-dimensional sublattice.

While Sutton & Balluffi (1987) concluded that the planar

density of coinciding atomic sites in a grain boundary is not

related to boundary properties, the idea persists in the

literature. The amount of current grain boundary data far

exceeds that available at the time of publication of Sutton &

Balluffi (1987), so the results presented below will make it

possible to compare recent grain boundary measurements

with correct theoretical planar densities.

2. The method

It is assumed below that the intersection or common sublattice

of two three-dimensional lattices � and �0 is itself a three-

dimensional lattice. It will be denoted by� \ �0. The index of
a sublattice is defined as the ratio of the volumes of primitive

cells of the sublattice and the lattice. A CSL is partly char-

acterized by its indices � and �0 with respect to the lattices �
and�0, respectively. In the case of homophase boundaries, the

second lattice is obtained by rotating the first one, i.e.�0 = R�,

where R denotes the rotation. Clearly, in this case, �0 = �.

The lattice reciprocal to � is denoted by �*. It is well

known that if L is a sublattice of �, then �* is a sublattice of

L*, and the indices of L in � and �* in L* are equal. This

implies that (� \ �0)* is the smallest-cell superlattice of both

�* and �0*, or in symbols, (� \ �0)* = �* [ �0*. Thus, the
intersection � \ �0 = (�* [ �0*)* can be derived from the

lattice �* [ �0* generated by vectors of �* and �0*.
The standard method for determining a lattice basis from a

set of generating vectors is by using the Hermite normal form

(HNF) of an integer matrix (e.g. Cohen, 1993, p. 73). With the

generating vectors being basis vectors of two lattices, HNF

gives a basis of the smallest-cell superlattice of the lattices.

Having lattices � and �0, one can get �* and �0*, use the

HNF-based method to determine �* [ �0*, and then the

relationship� \ �0 = (�* [ �0*)* to obtain the intersection of
� and �0.

The goal is to get planes of lattices � and �0 dense with

common nodes. They are also planes of the CSL; as such, these

are planes with small areas of their planar cells. The lattice

planes with the smallest areas of cells are based on short

vectors of the CSL. Thus, knowing the CSL, one needs to get

its shortest vectors and simple linear combinations thereof,

and see which of these relevant vectors span the smallest cell.

A method for getting the shortest vectors of a lattice is called

lattice (or basis or cell) reduction. Well known in crystal-

lography is the Niggli-reduction procedure.

In brief, the method of determination of the densest lattice

planes described below is practically based on two computa-

tional tools: the HNFof an integer matrix and Niggli reduction

of the lattice basis. Algorithms for both HNF and Niggli

reduction are easily accessible – see, e.g., Cohen (1993) and

Křivý & Gruber (1976), respectively. With these two elements,

determination of the densest lattice planes is straightforward.

2.1. Hermite normal form

All one needs here is the case of integer 3 � 6 rank-3

matrices with matrix columns containing vector components.

An integer matrix in HNF has the shape

0 0 0 H½ � ¼
0 0 0 ? ? ?
0 0 0 0 ? ?
0 0 0 0 0 ?

2
4

3
5;

where the square matrix H is upper triangular and its entries

satisfy the conditions Hii > Hij � 0 for j > i. The columns

preceding H have only zero entries. For an arbitrary integer

matrixM of full rank, there exists a unimodular integer matrix

U such that the matrix MU = HNF(M) is in HNF. Every

integer matrix of full row rank has a unique HNF. Reduction

of a matrix to its HNF can be seen as the determination of a

basis of a lattice generated by columns of the matrix. The

formula M = HNF(M)U�1 is nothing other than a way of

expressing columns of M via linear combinations of the

columns of HNF(M).

Based on the HNF of integer matrices, one can define

Hermite reduced form of a rational matrix M; it is given by

m�1HNF(mM), where m is the least common multiple of

denominators of the entries of M. The 3 � 3 matrix obtained

by dropping the first three (i.e. zero) columns of the 3 � 6

matrix m�1HNF(mM) will be denoted by HR(M).

2.2. Niggli reduction

The Niggli reduction of the lattice basis is a classic tool of

crystallography. The Niggli-reduced basis consists of the

shortest non-coplanar vectors of the lattice. The basis satisfies

conditions which make the basis unique (apart from its

handedness and orientation). A set of conditions for Niggli

reduction is given, e.g., by Křivý & Gruber (1976). The Niggli

reduction also provides Niggli character and Bravais type of

the lattice (de Wolff, 2005). With basis vectors bi (i = 1, 2, 3)

represented as columns of the matrix ½b1 b2 b3� ¼ ½bi�, the

matrix with vectors resulting from Niggli reduction of ½bi� will
be denoted by NRð½bi�Þ. With NR ð½bi�Þ = ½ci�, the magnitudes

of the vectors ci satisfy the inequalities jc1j � jc2j � jc3j.

2.3. Steps of the procedure

With known bases ½ai� and ½a0i� of CSL-related lattices� and

�0, the steps leading to determination of the plane with the

largest density of common lattice nodes are as follows:
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1. Compute the reciprocals ½a�i � ¼ ð½ai��1ÞT ¼ ½ai��T and

½a0i�� ¼ ½a0i��T, i.e. bases of �* and �0*.
2. Using HNF, get the basis ½b�i � of the lattice generated by

the vectors a�i and a0i
�; ½b�i � is a basis of �* [ �0*.

3. Get ½bi� ¼ ½b�i ��T reciprocal to ½b�i �; due to (�* [ �0*)* =
� \ �0, the matrix ½bi� comprises a basis of the common

sublattice � \ �0.
4. Reduce the basis ½bi�; the Niggli-reduced basis, say ½ci�,

consists of the shortest vectors of the CSL.

5. Using the vectors ci of the reduced basis, get pairs of

relevant vectors spanning two-dimensional lattices with small

areas of cells.

6. Determine the pair of relevant vectors corresponding to

the smallest area.

7. The two-dimensional lattice spanned by that pair is a

lattice plane in both � and �0; get its Miller indices in the

bases of these two lattices or in conventional bases. The

resulting plane has the largest planar density of common

lattice nodes. With a sufficiently large set of relevant vectors

one can also determine the second-densest plane. The above

scheme can be easily translated into a computer algorithm.

In the case of CSL-related cubic lattices� and�0 = R�, the

basis vectors ai and a0i have rational components in the

conventional orthogonal basis. Hence, also entries of the

matrix M ¼ ½a�1 a�2 a�3 a01
� a02

� a03
�� are rational, i.e. M is in the

domain of the HR mapping, and the key steps

½b�i � ¼ HRðMÞ and ½ci� ¼ NRð½bi�Þ

are directly applicable. The rest of the procedure is just

computation of basis reciprocals and dealing with the relevant

vectors.

2.4. Relevant vectors

The Niggli reduction provides the shortest non-coplanar

lattice vectors ci (i = 1, 2, 3). Pairs of these vectors span planar

cells with relatively small areas. The area of the cell spanned

by two vectors is equal to the magnitude of the vector product

of these vectors. To get the densest plane, it is enough to

consider the four pairs ðc1; c2Þ, ðc2; c3Þ, ðc3; c1Þ and ðc1; c2 þ c3Þ.
More combinations are needed to determine the second-

densest plane. To obtain the results listed below, the consid-

ered relevant vectors had the form

P3
i¼1

nici

with ni ¼ �1; 0 or + 1 and
P jnij 6¼ 0. Since the area spanned

by a and b is equal to that spanned by a and �b, only one of

two vectors with opposite signs needs to be taken into account.

This gives (33 � 1)/2 = 13 relevant vectors. It is easy to verify

that there are up to 25 distinct non-zero areas of cells spanned

by the relevant vectors. The pair of relevant vectors spanning

the smallest area is a basis of the sought-after densest CSL

plane.

In the cubic case, with vectors given in the conventional

orthogonal basis, the vector product of vectors spanning a

lattice plane has components proportional to Miller indices of

that plane.

2.5. Indices of planes

In general, a vector v perpendicular to a plane common to

the lattices � and �0 is parallel to the vectors
P

i hia
�
i andP

i h
0
ia

0
i
�, where (h1 h2 h3) = (h k l) and (h01 h02 h03) = (h0 k0 l0)

are coprime Miller indices of the plane in � and �0, respec-
tively. The indices can be computed from v using

hi / v 	 ai and h0i / v 	 a0i; ð1Þ
and they are mutually related via h0j ¼ �P

i hiða�i 	 a0jÞ. The �
sign arises by assuming that a vector representing a boundary

of a crystal points outward from the crystal.

In the case of cubic lattices related by �0 = R�, when

indices are in reference to the conventional orthogonal basis,

both ½aj� and ½a�j � are proportional to identity matrices, and

based on a0i ¼ Rai, one has h
0
j ¼ �P

i hiRij, where Rij is the ijth

entry of the orthogonal matrix representing R.

2.6. Equivalent boundary parameters

One additional issue which needs to be taken into account is

that planes with different Miller indices but the same density

of CSL nodes may be symmetrically equivalent. Detailed

description of equivalences between boundary parameters is

beyond the scope of this paper. However, it is worth noting

that the equivalences are a consequence of point symmetries
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Table 1
Misorientation parameters of CSLs of cubic lattices for � � 33.

With the parameter k provided in the second column, the exact smallest
misorientation angle is ! ¼ arccosðk=ð2�ÞÞ. The axes of rotations representing
the misorientations are given in the conventional orthogonal reference frame.
All presented results for cubic lattices and � � 33 rely on misorientation
parameters fixed at values listed in this table.

� k ! (
) Axis

3 3 60.0000 [111]
5 8 36.8699 [100]
7 11 38.2132 [111]
9 14 38.9424 [110]
11 14 50.4788 [110]
13a 24 22.6199 [100]
13b 23 27.7958 [111]
15 20 48.1897 [210]
17a 30 28.0725 [100]
17b 16 61.9275 [221]
19a 34 26.5254 [110]
19b 26 46.8264 [111]
21a 39 21.7868 [111]
21b 30 44.4153 [211]
23 35 40.4591 [311]
25a 48 16.2602 [100]
25b 31 51.6839 [331]
27a 46 31.5863 [110]
27b 44 35.4309 [210]
29a 42 43.6028 [100]
29b 40 46.3972 [221]
31a 59 17.8966 [111]
31b 38 52.2003 [211]
33a 62 20.0500 [110]
33b 55 33.5573 [311]
33c 34 58.9924 [110]
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of crystals and grain exchange symmetry. The general scheme

for getting equivalent boundary parameters involves both

lattice misorientations and interface planes in a coordinated

manner (Morawiec, 2009). However, in the proposed proce-

dure, the misorientation parameters are fixed. Thus, only the

symmetry operations changing the parameters of the interface

plane but leaving the misorientation parameters unchanged

need to be considered. In the cubic case and m3m point-group

symmetry, symmetrically equivalent representations of a

boundary can be easily identified.

One needs to stress again the impact of grain exchange

symmetry. For instance, one may consider two planes which

arise as the densest for cF lattices related by �7; their indices

given in the form (h k l) k (h0 k0 l0) are ð3 5 1Þ k ð5 3 1Þ and

ð1 3 5Þ k ð1 5 3Þ. These boundaries are equivalent only if the

grain exchange symmetry is assumed.

2.7. Boundary types

For clarity, it is worth recapitulating the basics of grain

boundary geometry. A boundary having a representation with

the misorientation axis in the boundary plane is a tilt

boundary, and a boundary having a representation with the

misorientation axis perpendicular to the boundary plane is

called a twist boundary. A boundary is symmetric if the

boundary plane is a mirror between structures of the crystals.

Symmetric boundaries exist only at some misorientations

(Morawiec, 2012).

In the case of cubic lattices, most of the low-� CSLs allow

for symmetric boundaries. With � < 50, only �39b does not

belong to this class. If a boundary is a symmetry plane (h k l),

494 Adam Morawiec � Dense coincidence site lattice planes Acta Cryst. (2022). A78, 491–497
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Table 2
Top of auxiliary table with transposed Niggli-reduced bases, Niggli
characters (Nc) and Bravais types (Bt) of CSLs for coincident cF lattices.

The last two columns indicate pairs of relevant vectors spanning the planes
with the smallest areas per coincident node. See the supporting information
for details.

� Niggli-reduced basis Nc Bt First Second

3 ½1 0 1 j 0 1 1 j 2 2 2�=2 12 hP (1) (3)
5 ½2 0 0 j 1 1 2 j 1 2 1�=2 18 tI (1) (2)
7 ½2 1 1 j 1 1 2 j 1 2 1�=2 4 hR (1) (4)
9 ½1 1 0 j 1 2 3 j 2 3 1�=2 19 oI (1) (7)

Figure 1
Stereographic projection of normals to the boundary planes for �9 (a)
and �15 (b) misorientations. Circles 1 and 2 mark, respectively, the
densest and the second-densest planes for cF-type lattices. The lines 3 and
4 mark tilt boundaries. Twist boundaries are marked by discs 4, and circles
6 indicate positions of poles of symmetric boundaries. The figure was
drawn using the software GBToolbox (Glowinski & Morawiec, 2012).

Table 3
Most dense coinciding planes for cF lattices.

Symmetric interfaces are marked by ‘s’ and twists are marked by ‘t’. The area
per coinciding node is determined by � and �hkl.

� First-densest �hkl Second-densest �hkl

3 ð1 1 1Þ k ð1 1 1Þ s 1 ð1 2 1Þ k ð1 1 2Þ s 8
5 ð0 2 1Þ k ð0 1 2Þ s 4 ð5 3 1Þ k ð5 3 1Þ 7
7 ð3 5 1Þ k ð5 3 1Þ 5 ð2 1 3Þ k ð3 1 2Þ s 8
9 ð1 1 1Þ k ð1 1 5Þ 3 ð2 2 1Þ k ð2 2 1Þ s 4
11 ð1 1 3Þ k ð1 1 3Þ s 1 ð3 3 2Þ k ð3 3 2Þ s 8
13a ð0 2 3Þ k ð0 3 2Þ s 4 ð0 5 1Þ k ð0 5 1Þ s 8
13b ð9 3 1Þ k ð9 1 3Þ 7 ð4 3 1Þ k ð3 4 1Þ s 8
15 ð1 1 1Þ k ð7 1 5Þ 5 ð1 2 5Þ k ð1 2 5Þ s 8
17a ð0 4 1Þ k ð0 4 1Þ s 4 ð0 5 3Þ k ð0 3 5Þ s 8
17b ð1 5 5Þ k ð1 7 1Þ 3 ð3 2 2Þ k ð2 3 2Þ s 4
19a ð3 3 1Þ k ð3 3 1Þ s 1 ð1 1 6Þ k ð1 1 6Þ s 8
19b ð5 3 2Þ k ð3 5 2Þ s 8 ð11 1 7Þ k ð7 1 11Þ 9
21a ð1 1 1Þ k ð1 1 1Þ t 7 ð4 1 5Þ k ð5 1 4Þ s 8
21b ð1 4 2Þ k ð1 2 4Þ s 4 ð1 1 1Þ k ð5 11 1Þ 7
23 ð3 5 9Þ k ð3 9 5Þ 5 ð1 6 3Þ k ð1 3 6Þ s 8
25a ð0 4 3Þ k ð0 3 4Þ s 4 ð0 7 1Þ k ð0 7 1Þ s 8
25b ð5 1 7Þ k ð1 5 7Þ 3 ð5 4 3Þ k ð4 5 3Þ s 8
27a ð1 1 5Þ k ð1 1 5Þ s 1 ð5 5 2Þ k ð5 5 2Þ s 8
27b ð1 2 7Þ k ð1 2 7Þ s 8 ð5 1 1Þ k ð5 1 1Þ t 9

ð1 1 1Þ k ð7 13 5Þ 9
29a ð0 5 2Þ k ð0 5 2Þ s 4 ð0 3 7Þ k ð0 7 3Þ s 8
29b ð4 3 2Þ k ð3 4 2Þ s 4 ð11 1 9Þ k ð5 3 13Þ 7
31a ð1 6 5Þ k ð1 5 6Þ s 8 ð13 15 3Þ k ð15 13 3Þ 13
31b ð7 9 5Þ k ð3 11 5Þ 5 ð2 7 3Þ k ð2 3 7Þ s 8
33a ð5 5 7Þ k ð1 1 3Þ 3 ð4 4 1Þ k ð4 4 1Þ s 4
33b ð3 1 1Þ k ð3 1 1Þ t 3 ð1 7 4Þ k ð1 4 7Þ s 8
33c ð7 7 1Þ k ð1 1 3Þ 3 ð2 2 5Þ k ð2 2 5Þ s 4
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the lattice misorientation is equivalent to the half-turn about

[h k l], the lattices have a common sublattice, and � is related

to the coprime indices h, k and l via � = (h2 + k2 + l2)/GCD(h2

+ k2 + l2, 2), where GCD denotes the greatest common divisor

of its arguments. It is worth noting that some misorientations

permit two nonequivalent symmetric boundaries. This is the

property of �3, �17b and the misorientations listed in Table 1

with the axes [1 0 0] and [1 1 0] (i.e. �5, 9, 11, 13a, 17a, 19a,

25a, 27a, 29a, 33a and 33c).

3. Results for cubic lattices

Results for low-� CSLs of cF and cI lattices are listed in this

section, and those for cP lattices are in the supporting infor-

mation. In all cases considered, the parameters of misor-

ientations with � � 33 were fixed at values listed in Table 1.

The area A� of a planar cell is given in units of a2 where a is

the lattice parameter. The planar density of common nodes at

the boundary plane is 1/A�.

Intermediate results (the Niggli-reduced bases and the

relevant vectors) are listed in auxiliary tables in the supporting

information. These tables also contain byproducts of the

procedure: the Niggli character and Bravais type of each CSL.

For illustration, a part of such auxiliary data is shown in Table

2. The supporting information also contains a worked example

of determination of dense planes for cF lattices related by

�15.

Observations made below concern the data contained in

Tables 3, 4 and the one with results for cP lattices. They have

not been proven for CSLs of higher �. All listed CSL planes

are multiple-tilt boundaries (i.e. the lattices are related by two

or more rotations with distinct tilt axes). This fact is linked to

the two-dimensional periodicity of the common lattice nodes.

3.1. cF lattices

The lattice planes of the densest and the second-densest

interfaces with � � 33 are collected in Table 3. For the

coinciding cF lattices, the area of the primitive cell of

boundary planes is given by

AcF
� ¼ �hkl �ð Þ1=2=4;

with the values �hkl for particular planes listed in Table 3. For

instance, the densest interface between f.c.c. crystals related by

�25a can be specified by the indices ð0 4 3Þ in the first crystal

and ð0 3 4Þ in the second crystal. It is a symmetric interface.

With �hkl = 4, the planar cell of common nodes has the area

AcF
� ¼ ð5=2Þa2. In the case of �27b, the second position is

shared by two nonequivalent interfaces with the same planar

densities. Most of the listed interfaces are symmetric. These

interfaces can also be seen as twist boundaries. There are also

cases of twist interfaces which are not symmetric. Positions of

poles of the densest and the second-densest planes for �9 and

�15 are shown on stereographic projections in Fig. 1.

3.2. cI lattices

The tables for coinciding cI lattices are arranged in the same

way as those for cF lattices. The lattice planes of the densest

and the second-densest boundaries are in Table 4. For the

coinciding cI lattices, the area of the cell is

AcI
� ¼ �hkl �ð Þ1=2=2:

Positions of poles of the densest and the second-densest planes

for �9 and �15 are shown in Fig. 2.

The results for cI lattices are related to those for cP lattices.

In both cases, if the CSL misorientation allows for symmetric

boundaries, the densest interface is symmetric. Hence, if a

CSL admits only one symmetric interface, it is the densest for

both cI and cP. If there are two nonequivalent symmetric

interfaces, they are exchanged, i.e. the one which is the densest

for cP is the second dense for cI and vice versa.

3.3. Smith’s formula

In a search for a method of determining dense boundary

planes, Smith (1974) proposed a simple closed form expression

for cell area per coinciding node,
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Figure 2
Stereographic projection of normals to the boundary planes for �9 (a)
and �15 (b) misorientations with circles marking the densest and the
second-densest planes for cI-type lattices. The legend is the same as in
Fig. 1.
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� ¼ h2 þ k2 þ l2
� �1=2

=�;

where � equals 2 for b.c.c. and 4 for f.c.c. structures. As

presented by Smith (1974), the formula was believed to be

applicable to a symmetric CSL boundary (h k l) when the

misorientation of lattices is expressible as a 180
 twist about

[h k l]. It turns out that Smith’s formula gives correct results

only in some cases.

It is applicable to cP lattices with � = 1. If a CSL misor-

ientation allows for symmetric boundaries, the densest inter-

face is symmetric with cell area AcP
� ¼ ð�hkl�Þ1=2 and �hkl =

GCD(h2 + k2 + l2, 2). Thus, AcP
� ¼ �. If there are two

symmetric boundaries, Smith’s formula is applicable to both.

Smith’s formula fails for some densest symmetric interfaces

between cI lattices. Two such cases (�21b and �29b) are in

Table 4 but more are visible in Fig. 3(b). If a CSL misor-

ientation allows for symmetric boundaries, the densest inter-

face is symmetric with �hkl = 4/GCD(h2 + k2 + l2, 2). Hence,

one has AcI
� ¼ 2�=GCDðh2 þ k2 þ l2; 2Þ, i.e. AcI

� is equal to � if

h2 + k2 + l2 is even, and AcI
� is equal to 2� if h2 + k2 + l2 is odd.

In Fig. 3(b), Smith’s formula corresponds to points on the

lower branch described by AcI
� ¼ ð2�Þ1=2=2. It fails for the

points in the upper branch described by AcI
� ¼ ð4�Þ1=2=2. (The

outlier with �hkl = 6 represents �39b.)

The case of coinciding cF lattices differs from cP and cI by

the fact that the densest boundaries are not always symmetric.

Even in the case of symmetric boundaries, Smith’s formula

fails in most cF cases. For symmetric boundaries listed in Table

3, the rule is that AcF
� ¼ � if all indices (h k l) are odd, and

AcF
� ¼ 2� otherwise.

4. Generalization

A slightly modified version of the described scheme is

applicable to exactly defined non-cubic latices related by �0 =
R� and to common sublattices of distinct lattices. The latter

case may be applicable to model some heterophase interfaces

and orientation relationships.

Let � and �0 be arbitrary three-dimensional lattices having

a common three-dimensional sublattice. As above, let the

matrices ½ai�, ½a0i�, ½a�i � and ½a0i�� contain basis vectors specified in
an orthonormal reference frame for �, �0, �* and �0*,
respectively. The main complication is that the matrix

M ¼ ½a�1 a�2 a�3 a01
� a02

� a03
�� is generally irrational. However,

since the lattices are assumed to have a common three-

dimensional sublattice, the matrix ½a�i ��1M ¼ ½ai�TM has

rational entries and the rank of the matrix is 3. Now, let

½b�i � ¼ HRðMÞ be the matrix built of the last three columns of

m�1½a�i �HNFðm½a�i ��1MÞ, where m is the least common

multiple of denominators of entries of ½a�i ��1M. As above, ½bi�
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Table 4
Most dense coinciding planes for cI lattices.

� First-densest �hkl Second-densest �hkl

3 ð1 2 1Þ k ð1 1 2Þ s 2 ð1 1 1Þ k ð1 1 1Þ s 4
5 ð0 3 1Þ k ð0 3 1Þ s 2 ð0 2 1Þ k ð0 1 2Þ s 4
7 ð2 1 3Þ k ð3 1 2Þ s 2 ð1 4 5Þ k ð4 1 5Þ 6
9 ð1 1 4Þ k ð1 1 4Þ s 2 ð2 2 1Þ k ð2 2 1Þ s 4
11 ð3 3 2Þ k ð3 3 2Þ s 2 ð1 1 3Þ k ð1 1 3Þ s 4
13a ð0 5 1Þ k ð0 5 1Þ s 2 ð0 2 3Þ k ð0 3 2Þ s 4
13b ð4 3 1Þ k ð3 4 1Þ s 2 ð7 2 5Þ k ð7 5 2Þ 6
15 ð1 2 5Þ k ð1 2 5Þ s 2 ð3 1 0Þ k ð8 1 5Þ 6

ð1 3 0Þ k ð4 7 5Þ 6
17a ð0 5 3Þ k ð0 3 5Þ s 2 ð0 4 1Þ k ð0 4 1Þ s 4
17b ð4 3 3Þ k ð3 4 3Þ s 2 ð3 2 2Þ k ð2 3 2Þ s 4
19a ð1 1 6Þ k ð1 1 6Þ s 2 ð3 3 1Þ k ð3 3 1Þ s 4
19b ð5 3 2Þ k ð3 5 2Þ s 2 ð1 7 8Þ k ð7 1 8Þ 6
21a ð4 1 5Þ k ð5 1 4Þ s 2 ð1 2 3Þ k ð2 1 3Þ 6
21b ð1 4 2Þ k ð1 2 4Þ s 4 ð3 2 1Þ k ð11 1 2Þ 6

ð1 3 2Þ k ð5 10 1Þ 6
ð2 1 3Þ k ð2 3 1Þ 6

23 ð1 6 3Þ k ð1 3 6Þ s 2 ð5 7 8Þ k ð4 11 1Þ 6
25a ð0 7 1Þ k ð0 7 1Þ s 2 ð0 4 3Þ k ð0 3 4Þ s 4
25b ð5 4 3Þ k ð4 5 3Þ s 2 ð10 7 1Þ k ð11 5 2Þ 6
27a ð5 5 2Þ k ð5 5 2Þ s 2 ð1 1 5Þ k ð1 1 5Þ s 4
27b ð1 2 7Þ k ð1 2 7Þ s 2 ð4 1 1Þ k ð11 5 4Þ 6
29a ð0 3 7Þ k ð0 7 3Þ s 2 ð0 5 2Þ k ð0 5 2Þ s 4
29b ð4 3 2Þ k ð3 4 2Þ s 4 ð7 2 11Þ k ð2 7 11Þ 6

ð10 7 5Þ k ð13 2 1Þ 6
31a ð1 6 5Þ k ð1 5 6Þ s 2 ð4 7 11Þ k ð7 4 11Þ 6
31b ð2 7 3Þ k ð2 3 7Þ s 2 ð13 1 4Þ k ð11 1 8Þ 6
33a ð1 1 8Þ k ð1 1 8Þ s 2 ð4 4 1Þ k ð4 4 1Þ s 4
33b ð1 7 4Þ k ð1 4 7Þ s 2 ð2 3 3Þ k ð5 13 2Þ 6
33c ð5 5 4Þ k ð5 5 4Þ s 2 ð2 2 5Þ k ð2 2 5Þ s 4

Figure 3
The area per coinciding node for the most dense boundary planes versus
� for CSLs of cF (a) and cI (b) lattices. This is a corrected analog of
Smith’s figure (Smith, 1974). The dotted curves are (�hkl�)1/2/�, where
�hkl is the number ascribed to the curve.
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reciprocal to ½b�i � is a basis of the sublattice common to � and

�0. The remaining steps of the procedure are the same as

above with one exception: if the lattices are different, there is

no ground for grain exchange symmetry, and only point

symmetries need to be considered. The Miller indices of the

plane perpendicular to a vector v are given by equation (1), or

in terms of the matrices ½ai� and ½a0i�, they are

ðh k lÞ ¼ ðh1 h2 h3Þ / vT½ai� and ðh0 k0 l0Þ ¼ ðh01 h02 h03Þ / vT½a0i�
in the lattices � and �0, respectively.

For a worked example of determination of the densest

planes of intersecting distinct lattices, the reader is referred to

the supporting information.

5. Final remarks

The density of coinciding sites in CSL-related crystals

frequently arises in analyses of grain boundaries. Given two

lattices, a method of determination of planes with high

densities of coinciding lattice nodes was presented. It is

applicable to arbitrary, possibly different, lattices having a

three-dimensional common sublattice. The method relies on

computing the Hermite normal form of an integer matrix and

on Niggli reduction of the common sublattice. The procedure

was applied to CSL-related cubic lattices, and the densest

planes are listed for low-� lattice misorientations.

From a practical viewpoint, the key limitation of the

described approach is that it is applicable to exact data.

This does not affect the analysis of homophase interfaces

between cubic lattices, but the limitation matters in the case of

non-cubic lattices with parameters affected by experimental

errors.
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