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Automatic crystal orientation determination and orientation mapping are

important tools for research on polycrystalline materials. The most common

methods of automatic orientation determination rely on detecting and indexing

individual diffraction reflections, but these methods have not been used for

orientation mapping of quasicrystalline materials. The paper describes the

necessary changes to existing software designed for orientation determination of

periodic crystals so that it can be applied to quasicrystals. The changes are

implemented in one such program. The functioning of the modified program is

illustrated by an example orientation map of an icosahedral polycrystal.

1. Introduction

The determination of orientations of crystallites, in particular

for orientation mappings, is an important aspect of studies of

polycrystals. However, data on the orientation statistics of

quasicrystalline materials are scarce. At present, quasicrystals

are not supported by the widely used fast commercial orien-

tation mapping systems relying on the detection of individual

reflections and conventional indexing, i.e. on assigning indices

to the reflections. Therefore, electron backscatter diffraction

(EBSD) orientation maps of quasicrystalline aggregates have

been obtained by computer-aided manual indexing (Tanaka et

al., 2016), by matching experimental patterns to simulated

patterns (Singh et al., 2019) or to patterns obtained from a

master reference pattern (Winkelmann et al., 2020), and by

automatic indexing using lattices of periodic approximants of

quasicrystals (Cios et al., 2020); see also Baker et al. (2017),

Becker & Leineweber (2018), Leskovar et al. (2018) and Labib

et al. (2019, 2020).

The question is, how difficult is the conventional indexing of

quasicrystal diffraction patterns? The general idea is simple

and well known: one needs to replace the lattice basis by a

frame or overcomplete set of ‘basis’ vectors (Elser, 1985). In

practice, however, it is deemed in some quarters that indexing

quasicrystal diffraction patterns is complicated. The methods

described by Tanaka et al. (2016), Singh et al. (2019),

Winkelmann et al. (2020) and Cios et al. (2020) are ways

around the problem of conventional indexing of such patterns.

This paper demonstrates that the investment in adapting

existing indexing software to solve quasicrystal diffraction

patterns is relatively small. The necessary changes are

described in detail and implemented in one of the indexing

programs. The arguments are illustrated by an EBSD orien-

tation map of an icosahedral polycrystalline material.
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2. From periodic crystals to quasicrystals

2.1. Orientations of periodic crystals

It is worth recalling some basic facts about orientation

determination by indexing of detected reflections for periodic

crystals. Let s denote a scattering vector normal to a reflecting

crystal plane. In crystal diffraction, the scattering vector points

to a node of the crystal reciprocal lattice, i.e. it has the form of

the integer combination s = ha* + kb* + lc*, where hkl are the

reflection indices and a*, b*, c* are basis vectors of the reci-

procal lattice. With the vectors a*, b*, c* renamed as a1, a2, a3,

and the indices hkl renamed as l1l2l3, then using the summation

convention the above expression takes the form

s ¼ lia
i: ð1Þ

Besides having the basis vectors ai and the basis ai of the direct

lattice, it is convenient to equip the crystal with a rigidly

attached right-handed Cartesian system based on vectors ei =

ei in which the coordinates of s are si , i.e. s = sie
i. Since the

vectors ei , a
i and ai are known a priori, so are their dot

products. In particular, by definition, one has ai � aj ¼ �i
j ,

where � is the Kronecker delta. Knowing the indices l1l2l3
(i.e. hkl) of the reflecting plane, one can get the Cartesian

coordinates,

si ¼ s � ei ¼ lja
j � ei ¼ ljB

j
i; ð2Þ

where B
j
i ¼ aj � ei is the i th Cartesian component of the j th

basis vector of the reciprocal lattice.

Diffraction patterns are made up of traces of diffraction

reflections. Based on the position of a trace, one computes the

coordinates sLi of the scattering vector s in the right-handed

laboratory Cartesian coordinate system based on vectors eiL,

i.e. one has s ¼ sLi e
i
L. The coordinates si and sLi are related by

si ¼ s � ei ¼ sLj e
j
L � ei ¼ Oi

jsLj ; ð3Þ
where Oi

j ¼ ei � ejL are entries of the special orthogonal

matrix O representing the sought orientation of the crystal in

the laboratory reference system.

In an experiment, a number of diffraction reflections are

detected, so one has the coordinates sLi of vectors of a certain

set, say G. On the other hand, there are numerous crystal

planes which may lead to detectable reflections. Using the

indices of potential high-intensity reflections, one obtains the

coordinates si of vectors of another set, say H. The problem of

orientation determination is to obtain the matrix O relating

(as many as possible) vectors from G to some vectors from H.

The problem can be seen as matching the largest possible

subset of G to a subset of H. For descriptions of suitable

algorithms, see e.g. Morawiec (2022) and references therein.

Details of how to calculate the coordinates of the vectors of

the G set depend on the diffraction technique, but generally

the method is simply based on the definition of the scattering

vector: the vector is the difference between the wavevectors of

the reflected beam and the incident beam.

As for the vectors of H, one usually starts with indices of a

single representative of each detectable family of symme-

trically equivalent reflections, and then the coordinates of the

scattering vectors corresponding to other reflections of the

family are determined by using all symmetry operations for

the crystal point symmetry: from the indices lj of the repre-

sentative, one obtains the coordinates si ¼ ljB
j
i of the corre-

sponding scattering vector, and with the orthogonal matrix R

representing a point symmetry in the basis ei , the coordinates

of the equivalent vector are Ri
jsj . Note, though, that care must

be taken in cases where the vectors overlap with symmetry

elements and the number of distinct vectors is smaller than the

number of symmetry operations.

The integrity of the orientation determination procedure is

confirmed by explicitly assigning indices to individual reflec-

tions. To this end, the list of vectors in H can be accompanied

by a table with the indices of vectors on the list, but a more

convenient approach is to calculate the indices directly from

the si coordinates without creating any additional tables. The

indices are li = lja
j � ai = s � ai = sje

j � ai = Ai
jsj , where Ai

j =

ai � ej is the j th Cartesian component of the i th basis vector of

the direct lattice. If the coordinates are inaccurate, such as

those computed based on a symmetry operation or obtained

from experimental sLj via equation (3), the indices are

li ¼ s � ai
� � ¼ Ai

jsj
� �

; ð4Þ
where bxe denotes the integer nearest to real x. If the

magnitude of s is not known, as in the case of scattering

vectors corresponding to EBSD bands, one needs to test all

admissible magnitudes.

2.2. Orientations of quasicrystals

The question is how the case of a quasicrystal differs from

that of a periodic crystal. As was already noted, the lattice

basis ai (i = 1, 2, 3) must be replaced by a frame, i.e. an

overcomplete set of vectors a�, where � = 1, 2, . . . , n � 3

(Elser, 1985). Every scattering vector can be expressed as a

linear integer combination of the vectors a�. The expressions

(1) and (2) need to be replaced by

s ¼ l�a
� and si ¼ s � ei ¼ l�a

� � ei ¼ l�B
�
i; ð5Þ

where l� are reflection indices and B�
i ¼ a� � ei.

The vectors a� correspond to the basis ai of the reciprocal

lattice, whereas, as a rule, the input of orientation determi-

nation systems dealing with periodic data contains the basis of

the direct lattice. To stay within this convention, one needs to

input the frame a� dual to a�. The set of vectors a� can be

viewed as one whose subsets span quasicrystal tilings in

physical space, i.e. vectors pointing to the vertices of tiles can

be expressed as linear integer combinations of the vectors a�.

The Cartesian coordinates B�
i of the vectors a� are

obtained from the input coordinates A�
i ¼ a� � ei of the

vectors a� using the generalized (Moore–Penrose) inverse

(Ben-Israel & Greville, 2003) of the transposed matrixA, i.e. B

= (AT)+. Clearly, if n = 3, the vectors a� are linearly inde-

pendent, the matrix A is invertible and B is the regular inverse

of AT.

One also needs to recall that quasicrystals have the infla-

tion/deflation property. Unlike the (Niggli-reduced) bases of a
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periodic crystal lattice, frames characterizing quasicrystals and

their diffraction patterns are not unique; they can be inflated

or deflated (Elser, 1985). However, this is not an issue here

because a specific frame a� is selected, and one only needs to

ensure that the indices l� are correct for the dual frame a�.

In the case of icosahedral quasicrystals, it is convenient to

use the frame of Bancel et al. (1985) with n = 6 and the vectors

a1 ¼ e1 þ �e2
� �

=a a2 ¼ e1 � �e2
� �

=a
a3 ¼ e2 þ �e3ð Þ=a a4 ¼ e2 � �e3ð Þ=a
a5 ¼ e3 þ �e1

� �
=a a6 ¼ e3 � �e1

� �
=a

ð6Þ

along fivefold symmetry axes; the vectors ei are along twofold

axes, � denotes the golden ratio and a is a structural para-

meter. The direct-space frame a� dual to Bancel’s frame a� is

given by a� = a�/[2(� + 2)]. For alternative frames, see Elser

(1985), Katz & Duneau (1986) and Cahn et al. (1986).

Replacement of the lattice basis by a frame affects the

generation of the theoretical scattering vectors of the set H.

One complication is obtaining the indices of symmetrically

equivalent reflections. Lists of equivalent indices for some

quasicrystal symmetries are given by Morawiec (2022).

Moreover, the indexing based on equation (4) cannot be easily

generalized to quasicrystals. A procedure described in Section

13.5 of Morawiec (2022) generalizes the conventional li = s � ai
= Ai

jsj , but it relies on a distinction between rational and

irrational numbers, and it is inapplicable to inaccurate data.

An approach applicable to such data for icosahedral quasi-

crystals is given in the Appendix.

All other aspects of quasicrystal orientation determination

remain the same as for periodic crystals. In particular, the

method of calculating the measured scattering vectors of G is

the same for both periodic crystals and quasicrystals. As with

periodic crystals, to obtain H it is generally assumed that

representatives of the families of reflections that make up the

diffraction patterns are known a priori. Finally, the method of

matching the largest possible subset ofG to a subset ofH does

not need to be changed.

2.3. Modifications to indexing software

The guidelines described in the previous section were used

to modify KiKoCh2, a program for orientation determination

via indexing of diffraction patterns, which was originally

developed for dealing with periodic crystals. For a description

of the original program, see Morawiec (2020).

With n denoting the number of frame-spanning vectors, the

main change to the program is that the modified version allows

for n to be larger than 3. The default value of n (which is 3) can

be changed in the input (Fig. 1). The other input data affected

by this change are, first, the tableA with the coordinatesA�
i of

vectors a� of the direct-space frame, and second, the lists of

indices l� of the representatives of families of reflecting planes

in the frame a�. With the dimension of the frame set to n, the

table A consists of n � 3 entries (instead of 3 � 3 entries for

basis vectors), and the number of indices representing a family

of reflectors is n (instead of 3).

The only significant internal modification to the program

concerns the calculation of the (reciprocal-space) frame a�

from the input (direct-space) frame a� . The subroutine for

calculating the regular inverse of a matrix is replaced by

code for numerical computation of the Moore–Penrose

inverse.

research papers

Acta Cryst. (2023). A79, 339–344 Adam Morawiec � Automatic determination of orientations 341

Figure 1
Parts of headers of input files for processing typical EBSD data for (left-hand column) face-centred cubic metals and (right-hand column) icosahedral
quasicrystals. The keywords used in the original version of KiKOCh2 have been left unchanged so that the modified program can process old data. The
main difference is that the number of frame vectors defaults to 3 in the left column, and it is set at 6 in the right column. Consequently, the number of
indices specifying families of reflectors is 3 in the left column and 6 in the right column. Clearly, the two cases also differ in the number and type of point
symmetry operations.
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The modified software is universal in the sense that with

n = 3 it reduces to the original program for indexing data from

periodic crystals. It is also applicable to periodic crystals with

reflection indices specified in frames with n larger than 3

(Morawiec, 2016). In particular, it can be applied to data

specified in a hexagonal four-index setting or in quadray

coordinates (Her, 1995; Čomić & Nagy, 2016).

The principles described above apply to diffraction patterns

of various types. In particular, they can be used to obtain

orientations from patterns generated by EBSD. One only

needs to take into account that, with the usual EBSD band

detection, the magnitudes of the scattering vectors are not

available. This just means that the vectors of bothG andH are

normalized to 1.

3. Example

The performance of the program is illustrated on poly-

crystalline EBSD data. The data for suction-cast icosahedral

TiZrNi are the same as those used byWinkelmann et al. (2020)

and Cios et al. (2020). Diffraction patterns were collected

using OIM software (EDAX-AMETEX Inc., USA). The

software detects bands in the patterns by Hough transforma-

tion and saves (Duda–Hart) line parameters corresponding to

the bands (Duda & Hart, 1972). These parameters were

converted to normalized scattering vectors; for each line, its

position was used to get the coordinates sLi of the unit vector

perpendicular to the plane containing the line and the point of

origin of the pattern. Sets of the coordinates sLi constitute the

input of KiKoCh2. The frame (6) with a = 1 was used. For the

material under consideration, the strongest reflections belong

to two families; the scattering vectors of the first family are

along fivefold axes, and the vectors of the second one are

along twofold axes. Therefore, the indices of representatives

of the families were specified as l1l2l3l4l5l6 = 100000 and

110000, respectively; see Bancel et al. (1985). The input file

also contained the 60 proper symmetry operations of the

icosahedron.

The file was processed by the modified KiKoCh2. For

almost all diffraction patterns, the number of detected bands

was eight. Of the 799 � 625 = 499 375 patterns, ten patterns

were not solved; in all these cases, the number of detected

bands was smaller than three. WithKiKoCh2, the quality of an

individual solution is quantitatively characterized by the

number Nu of indexed bands and the fit q of the detected and

theoretical scattering vectors.1 Nu and q depend on the toler-

ances used for matching the vectors, but with the default

tolerances of KiKoCh2 the average number of indexed bands

was 7.66 and the average fit was 0.78�. The rate of indexing

(serial computation on a 2.6 GHz PC) was more than

2.6 � 104 patterns per second.

An additional small program for displaying the orientation

map was written. The resulting map is shown in Fig. 2. It is

similar to those obtained byWinkelmann et al. (2020) and Cios

et al. (2020).
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Figure 2
An orientation map of the icosahedral quasicrystal TiZrNi. The colouring scheme is based on an arbitrarily selected direction. The triangle on the right is
the domain of that direction. The vector d3 is parallel to a1 + a5 � a6 , i.e. to one of the threefold symmetry axes. The map was not subject to any cleanup.
Boundaries with misorientations exceeding 3� are marked in black.

1 The fit is the arccosine of the average dot product of the detected and
matching theoretical vectors. The dot product of an individual pair of vectors
is �ijsiOj

ksLk = cos�, where � is the angle between the vectors. With Nu pairs,
one has q = arccosðPNu

i¼1 cos�i=NuÞ ’ ðPNu

i¼1 �
2
i =NuÞ1=2, i.e. the fit is close to the

root mean square of the angles �i .
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4. Final remarks

Automatic determination of crystallite orientations by

indexing detected diffraction reflections is a fast and conve-

nient tool for creating orientation maps of polycrystalline

materials. However, it has not been previously available for

quasicrystals. This paper has described modifications to soft-

ware designed for periodic crystals that allow it to be used for

quasicrystals.

The described modifications were implemented in the

existing program KiKoCh2. The modified version of KiKoCh2

for Windows can be downloaded from http://imim.pl/personal/

adam.morawiec/. The package also contains a short set of

instructions for the program and example data files. For

illustration, KiKoCh2 was applied to the indexing of EBSD

bands detected using a commercial EBSD system. A clear

orientation map of suction-cast TiZrNi icosahedral quasi-

crystal was constructed.

As has been the case with periodic crystals, the imple-

mentation of quasicrystal orientation determination in auto-

matic orientation mapping systems will open other

possibilities such as crystallographic texture determination,

phase discrimination, determination of orientation relation-

ships etc.

APPENDIX A
Indices of computed scattering vector in frame (6)

Below is a procedure for determining reflection indices in

the frame (6) for an icosahedral quasicrystal from approx-

imate components of the scattering vector given in the

Cartesian system attached to the crystal. Given the approx-

imate coordinates si = s � ei , the task is to determine the

indices l� such that l�a
� ’ s = sie

i. The indices l� satisfy the

relationship

A�
isi ¼ a� � ei� �

si ¼ a� � s ’ a� � l�a
�ð Þ ¼ a� � a�� �

l� ¼ g�
�l�;

ð7Þ

where g�
� ¼ a� � a� are entries of a projection matrix. With

the frame (6) and its dual a�, the explicit form ofg�
�l� ’

A�
isi is

ffiffiffi
5

p
l1 � l2 þ l3 þ l4 þ l5 � l6 ’ aðs1=� þ s2Þ

�l1 þ
ffiffiffi
5

p
l2 � l3 � l4 þ l5 � l6 ’ aðs1=� � s2Þ

l1 � l2 þ
ffiffiffi
5

p
l3 � l4 þ l5 þ l6 ’ aðs2=� þ s3Þ

l1 � l2 � l3 þ
ffiffiffi
5

p
l4 � l5 � l6 ’ aðs2=� � s3Þ

l1 þ l2 þ l3 � l4 þ
ffiffiffi
5

p
l5 � l6 ’ aðs3=� þ s1Þ

�l1 � l2 þ l3 � l4 � l5 þ
ffiffiffi
5

p
l6 ’ aðs3=� � s1Þ:

ð8Þ

This system of approximate equations can be solved with

respect to integer l� in various ways. One simple approach is to

take the solutions of the first, third and fifth equations with

respect to l2, l4 and l6 which are

l2 ’ l5 þ �ðl1 þ l3Þ � �1
l4 ’ l1 þ �ðl3 þ l5Þ � �2
l6 ’ l3 þ �ðl5 þ l1Þ � �3

ð9Þ

or

Ki ’ �Li � �i; ð10Þ
where i = 1, 2, 3,

K1 ¼ l2 � l5 L1 ¼ l1 þ l3
K2 ¼ l4 � l1 L2 ¼ l3 þ l5
K3 ¼ l6 � l3 L3 ¼ l5 þ l1

ð11Þ

and

�1 ¼ aðs1=� þ �s2 þ s3Þ=2
�2 ¼ aðs2=� þ �s3 þ s1Þ=2
�3 ¼ aðs3=� þ �s1 þ s2Þ=2:

ð12Þ

Knowing the coordinates sj (j = 1, 2, 3), one determines �i. The
next step is to obtain the integers Ki and Li satisfying the

approximate relationship (10). This can be done by computing

�Li � �i for all Li with small absolute values |Li| � Llimit , and

by choosing the pairs of Li and Ki ¼ b�Li � �ie for which

�Li � �i is closest to an integer. Knowing Ki and Li , one

obtains the indices l� by solving equations (11) or explicitly

from

l1 ¼ ðL1 � L2 þ L3Þ=2
l3 ¼ ðL2 � L3 þ L1Þ=2
l5 ¼ ðL3 � L1 þ L2Þ=2

and

l2 ¼ l5 þ K1

l4 ¼ l1 þ K2

l6 ¼ l3 þ K3:
ð13Þ

The procedure works only if the errors on si and Llimit are

sufficiently small. Therefore, in general, additional filters for

rejecting unexpected sets of indices are needed.

It is worth illustrating the above scheme with a worked

example. Let a = 1, and let the Cartesian components of the

vector s be s1 ’ �0.96, s2 ’ 0.58 and s3 ’ 1.63. With these
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Table 1
Values of �Li � �i for �i listed in the text and integer Li with absolute values not exceeding 4.

For each i, the numbers �Li � �i closest to integers are marked in bold.

L1 �4 �3 �2 �1 0 1 2 3 4
�L1 � �1 �7.46 �5.84 �4.22 �2.61 �0.99 0.63 2.25 3.87 5.48

L2 �4 �3 �2 �1 0 1 2 3 4
�L2 � �2 �7.49 �5.87 �4.25 �2.64 �1.02 0.60 2.22 3.84 5.45

L3 �4 �3 �2 �1 0 1 2 3 4
�L3 � �3 �6.49 �4.87 �3.25 �1.64 �0.02 1.60 3.22 4.84 6.46
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numbers, equations (12) lead to �1 ’ 0.9876, �2 ’ 1.018 and

�3 ’ 0.01704. The values of �Li � �i for integer Li such that |Li|

� Llimit = 4 are listed in Table 1. Based on this table, one has

K1 ¼ b�0:99e ¼ �1 and L1 = 0, K2 ¼ b�1:02e ¼ �1 and

L2 = 0, K3 ¼ b�0:02e ¼ 0 and L3 = 0. By using equations (13),

one obtains the indices corresponding to s, which are l1l2l3l4l5l6
= 010100.
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