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Neutron time-of-flight transmission spectra of mosaic crystals contain Bragg

dips, i.e., minima at wavelengths corresponding to diffraction reflections. The

positions of the dips are used for investigating crystal lattices. By rotating the

sample around a fixed axis and recording a spectrum at each rotation step, the

intensity of the transmitted beam is obtained as a function of the rotation angle

and wavelength. The questions addressed in this article concern the determi-

nation of lattice parameters and orientations of centrosymmetric crystals from

such data. It is shown that if the axis of sample rotation is inclined to the beam

direction, the reflection positions unambiguously determine reciprocal-lattice

vectors, which is not the case when the axis is perpendicular to the beam. Having

a set of such vectors, one can compute the crystal orientation or lattice para-

meters using existing indexing software. The considerations are applicable to

arbitrary Laue symmetry. The work contributes to the automation of the

analysis of diffraction data obtained in the neutron imaging mode.

1. Introduction

Neutron studies of crystalline materials rely mainly on scat-

tering methods, but neutron imaging can also be useful in

research on such materials. In simple terms, neutron imaging

involves measuring the attenuation of the transmitted beam,

usually by radiography or tomography (Anderson et al., 2009).

Of interest here is wavelength-resolved imaging (Santisteban

et al., 2001; Woracek et al., 2018). Neutron spectra recorded in

transmission imaging geometry using the time-of-flight tech-

nique carry information about the crystal structure. The

intensity of the transmitted beam is affected by crystal

diffraction, and analysis of the recorded intensities allows

conclusions to be drawn about the geometry of the crystal

lattice. With this approach, crystallographic information is

extracted from diffraction effects observed using a single

wavelength-resolving point detector, and data are collected on

imaging beamlines. The spatial resolution of wavelength-

resolved transmission imaging is significantly better than that

of conventional neutron diffraction (Woracek et al., 2018).

Neutron transmission spectra of mosaic crystals contain

minima (known as Bragg dips) at locations corresponding to

diffraction reflections (Halpern et al., 1941; Frikkee, 1975;

Thiyagarajan et al., 1998; Santisteban, 2005). The positions and

shapes of the dips depend on the material, the orientation and

the degree of perfection of the crystal. They can be used to

determine the beam direction in the crystal reference frame

and to study crystal orientation, mosaicity, lattice parameters

or elastic strain (Malamud & Santisteban, 2016). Individual

‘Bragg-dip patterns’ have been used for ‘orientation’ and

strain mappings (Sato et al., 2017, 2018; Strickland et al., 2020;

Watanabe et al., 2020; Sakurai et al., 2021; Shishido et al., 2023;
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Watanabe et al., 2024). However, the crystallographic infor-

mation contained in a single spectrum is insufficient to fully

characterize the crystal orientation or strain. The information

is richer when multiple spectra are collected at various sample

orientations. The simplest way to vary these orientations is to

rotate the sample around a fixed axis in equiangular steps. By

recording a spectrum at each rotation step, one obtains the

intensity of the transmitted beam as a function of the rotation

angle ’ and the wavelength � (Cereser et al., 2017; Dessieux et

al., 2023a,b). The function can be seen as a diffraction pattern

in (’, �) coordinates.
Combining wavelength-resolved imaging with detection of

diffraction spots enabled Cereser et al. (2017) to map orien-

tations of a multigrain sample in three dimensions. That

mapping required a fully automatic procedure. It was based on

forward ‘indexing’, i.e., orientations were determined by

comparing experimental patterns with patterns simulated for

all possible orientations. Forward ‘indexing’ avoids the use of a

‘backward’ relationship leading from the pattern geometry to

the crystal orientation. However, there are advantages to

knowing and understanding this relationship. It can be used to

search for experimental configurations favorable for deter-

mination of the lattice or its orientation.

The questions addressed here concern characterization of

the crystal lattice using an experimental setup in which the

sample rotation axis is not necessarily perpendicular to the

beam direction. Having multiple spectra collected from a

centrosymmetric crystal rotated about a fixed axis, what are

the algorithms for determining crystal orientations or methods

for estimating lattice parameters? Closely related are the

issues of uniqueness of the resulting orientations and para-

meters.

It is shown below that if the axis of sample rotation is

inclined to the beam direction, reciprocal-lattice vectors can

be unambiguously determined from the positions of Bragg

dips in neutron transmission spectra. (There is an ambiguity in

the determination of these vectors when the axis is perpen-

dicular or parallel to the beam.) Knowledge of several vectors

of a lattice is the foundation for its full characterization.

Schemes for both orientation determination and ab initio

indexing are described. They are based on existing software.

The methods presented are applicable to arbitrary Laue

symmetry.

Throughout the article, vectors are identified with one-

column matrices. Unit vectors are denoted by the ‘hat’ symbol

.̂ Rotation by the angle � about axis parallel to the vector n̂

will be denoted by Rðn̂; �Þ. The same symbol will be used for

the 3 � 3 special orthogonal matrix representing the rotation.

The matrix is defined in such a way that the result of its

operation on vector v is Rðn̂; �Þv = cos� v + ð1� cos�Þðn̂ � vÞ n̂
+ sin � v� n̂.

2. Pattern of sinusoidal curves

A Bragg dip in the spectrum is the result of crystal diffraction.

First, one needs to link the wavelength at which the dip occurs

with the reciprocal-lattice node corresponding to the dip. Let

k0 and k be the wavevectors of the incident and diffracted

beams, respectively. The geometry of crystal diffraction is

described by the energy conservation law |k| = 1/� = |k0| and

the property that the scattering vector k � k0 points to a node

of the crystal reciprocal lattice. Analysis of crystal diffraction

data involves three right-handed Cartesian reference systems:

the one associated with the laboratory (indicated by the

superscript L), the sample reference system (S) and the system

attached to the crystal (C). Vectors with components in

different reference frames will be denoted by different

symbols. Let gL be the array with components of a reciprocal-

lattice vector in the laboratory reference frame. With the

wavevectors given in the same reference frame, based on

k� k0 ¼ gL, one has ðkþ k0Þ � gL ¼ k2 � k20 ¼ 0, and elim-

ination of k leads to

gL � ðgL þ 2k0Þ ¼ 0: ð1Þ

Let the reciprocal-lattice vector in the Cartesian reference

frame attached to the crystal be denoted by h.1 With O

standing for the special orthogonal matrix representing crystal

orientation in the sample reference frame [Bunge’s conven-

tion (Bunge, 1982; Morawiec, 2004)], the array g = OTh has

components in the sample reference frame and is related to gL

via

gL ¼ R’g; ð2Þ

where R’ is the special orthogonal matrix representing the

(’-dependent) orientation of the sample reference frame with

respect to the laboratory reference frame. Substitution of gL

given by (2) into (1) leads to

h2 þ 2ðR’ O
ThÞ � k0 ¼ 0; ð3Þ

where h2 is an abbreviation for h · h. With k̂0 ¼ �k0, one has

�ð’Þ ¼ �ð2=h2ÞðOThÞ � ðRT
’ k̂0Þ, or briefly

�ð’Þ ¼ k̂Sð’Þ � d; ð4Þ

where k̂Sð’Þ ¼ RT
’ k̂0 and d = �(2/h2)OTh = �(2/g2)g. The

wavelength � as a function of ’ is a sinusoid of period 2�. Only

parts of the sinusoid with �(’) > 0 are physically meaningful.

Since multiple reflecting planes (and corresponding vectors h)

are involved, multiple sinusoidal curves appear in a pattern.

Example patterns of sinusoids in (’, �) coordinates are shown
in Fig. 1.

Knowing d, one can calculate the corresponding reciprocal-

lattice vector in the sample reference frame,

g ¼ �ð2=d2Þ d: ð5Þ

Therefore, the prior step is to determine the sinusoid para-

meters d from �(’) and k̂Sð’Þ using equation (4).
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1 For notational consistency, this vector could be denoted as gC, but the symbol
h is preferred in order to have the same notation as in related papers referred
to below. The same applies to g ¼ gS.
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3. Parameters of sinusoids

Without losing generality, one can assume that the basis

vector eL1 of the laboratory reference frame is along k0,

eS3 is along the axis of crystal rotation and lies in the

plane spanned by k0 and eL3 , and the scalar products

k0 � eL1 , k0 � eS3 and eL3 � eS3 are non-negative (Fig. 2). With

these assumptions and fixed � ¼ arccosðeL3 � eS3 Þ, one has

k̂0 = ½1 0 0�T , 0 � � � �/2, R’ = RðeL2 ; �ÞTRðeS3 ; ’Þ and

k̂Sð’Þ ¼ cos� cos ’ cos� sin ’ sin�½ �T .
Knowing wavelengths on a sinusoid at three different angles

’j (j = 1, 2, 3 and 0 � ’j < 2�), one has a system of three linear

equations

�ð’jÞ ¼ k̂Sð’jÞ � d ð6Þ
for components of d. The coefficient matrix is the transpose of

KS ¼ ½k̂Sð’1Þ k̂Sð’2Þ k̂Sð’3Þ�. Its determinant is given by

detðKSÞ ¼ sin� cos2 � ðsinð’1 � ’3Þ þ sinð’2 � ’1Þ
þ sinð’3 � ’2ÞÞ: ð7Þ

The determinant equals zero when � equals 0 or �/2. Clearly,
there is an essential difference between singular and non-

singular cases; if the matrix KS is singular, d is not unique,

and this affects the determinability of the reciprocal-lattice

vector g.

3.1. Singular cases

3.1.1. The case of v = p/2. The physical reason for the

singularity at � = �/2 is obvious: rotation of the sample about

an axis parallel to the beam does not affect the angles between

reflecting planes and the beam. In this case, the sinusoids

become straight lines, and since k̂Sð’Þ ¼ ½0 0 1�T, the wave-

length is determined by the third component of d. Clearly,

spectra recorded during sample rotation contain the same

information as a single spectrum. Indexing an individual

spectrum is equivalent to determination of the transmitted

beam direction in the crystal reference frame. This subject is

addressed in Appendix A. It is easy to see that the orientations

ORðeS3 ; �Þ lead to the same pattern regardless of the angle �.
Moreover, the same pattern is obtained after the sample is

half-turned about an axis perpendicular to the beam. Thus,

also the orientations ORðeS1 ; �ÞRðeS3 ; �Þ lead to the same

pattern as that for O.

3.1.2. The case of v = 0. The reason for the singularity at � =

0 is more subtle: with varying ’, the impact of the change in

the angle between the beam and the reflecting plane on

the last component of d is canceled out by the change in

the wavelength contributing to the pattern. Since k̂Sð’Þ =

½cos ’ sin ’ 0�T , the third component of d does not affect the

sinusoid �(’).
With � = 0, the pattern of sinusoids has the period of �

along ’, i.e., the spectra at ’ and ’ + � are identical: since

h2 = (�h)2 and ðR’ O
ThÞ � k0 = ð�OThÞ � ð�RT

’ k0Þ =

ðOTð�hÞÞ � ðRT
’þ� k0Þ = ðR’þ�O

Tð�hÞÞ � k0, if equation (3) is

satisfied, so is the relationship (�h)2 + 2(R’+�O
T(�h)) · k0 =

0. Thus, if there is a dip at (’, �) due to h, then there is a dip at

(’ + �, �) due to �h. The fact that the pattern of sinusoids has

the period of � affects orientation determination. Let C

denote the half-turn about eS3 , i.e., C ¼ RðeS3 ; �Þ ¼ R�. Since

R’+�O
T = R’CO

T = R’(OC)T, the periodicity implies that the

patterns forO andOC are identical.2 This means that with � =

0, there is an ambiguity in determining crystal orientation: two

equally correct orientations O and OC result from each

pattern. A scheme for determining the orientations O and OC

based on data obtained with the crystal rotation axis

perpendicular to the beam direction is sketched at the end of

Appendix A.

Summarizing, the usual measurement geometry (see, e.g.,

Santisteban, 2005; Malamud & Santisteban, 2016; Cereser et

al., 2017; Dessieux et al., 2023a) with � = 0 is not optimal for

lattice characterization. There are non-equivalent crystal
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Figure 1
Simulated patterns of sinusoidal curves for a Cu crystal with the plane
(1 2 3) perpendicular to the sample rotation axis eS3 and the crystal
direction ½6 3 4� along sample’s eS1 direction. (The orientation can be seen
as a variant of the orientation S common in textures of face-centered-
cubic metals.) The lattice parameter a = 3.61334 Å was used. Families of
reflecting planes are {111} (red), {200} (blue), {220} (black), {311} (gray).
The angle � between the plane perpendicular to the incident beam and
the axis of specimen rotation is 35.264� in (a) and 0� in (b). Periods of the
patterns in (a) and (b) are 360� and 180�, respectively.

2 The problem of orientation ambiguity is mentioned in Cereser et al. (2017)
and it is extensively addressed in the supplementary information to that paper.
It is claimed that the orientations O (which equals UT in the notation of
Cereser et al., 2017) and COC lead to the same pattern. Generally, this claim is
false, i.e., patterns from crystals at orientations O and COC are different. In
the case of cubic crystals with the Cartesian axes along the fourfold symmetry
axes, the presence of C on the left side of O is inconsequential because the
orientations O and CO are equivalent due to the crystal symmetry, so also the
patterns for OC and COC are identical.
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orientations leading to identical patterns. Since this geometry

does not allow for calculating the last component of d, the

reciprocal-lattice vectors are not fully determinable, which

makes the geometry inconvenient for calculating lattice

parameters or strain tensors.

3.2. The case with inclined rotation axis

All components of d can be obtained when the absolute

value of the determinant (7) is sufficiently large. It reaches

maximum when � ¼ arctan 1=
ffiffiffi
2

p� � 	 35:264� and the separ-

ation between the angles ’i is the largest possible.

The simplest scheme for computing d is to use ’ and � of

appropriately selected points on a sinusoid. With � signifi-

cantly different from 0 and �/2, three such points are suffi-

cient, but clearly, a better approach is to use more, say J, points

and compute d by solving the linear least-squares problem

min
PJ

j¼1ðk̂Sð’jÞ � d� �ð’jÞÞ2. Formally, its solution is

d ¼ Kþ
S

� �T
k; ð8Þ

where k = ½�ð’1Þ �ð’2Þ . . . �ð’JÞ�T , KS = ½k̂Sð’1Þ k̂Sð’2Þ
. . . k̂Sð’JÞ� and Kþ

S is the pseudoinverse of KS. In practice, the

pseudoinverse is computed using singular value decomposi-

tion.

If the axis inclination angle � is affected by a small non-zero

error " (in radians), then the relative error of the components

d1 and d2 of d is �1;2 	 " tan� and the relative error of d3 is

�3 	 " cot�. (Consistent with what was written in the

previous section, �1, 2 and �3 become infinite when � = �/2
and � = 0, respectively.) Analogous expressions for errors of

components of g involve �(’j) and are complicated, but with �
near �/4, the relative errors of components of d are close to ",
and if all components of d are modified with the same relative

error ", then the relative error of components of g = �2d/d2 is

"/(1 + ") 	 ". This gives a rough estimate of the sensitivity of

the reciprocal-lattice vector determination to the inclination

angle �.

3.3. Detection of sinusoids by image analysis

When intensities of the transmitted neutron beam are

recorded for the angles ’j changed in equal steps and discrete

equidistant wavelengths �k, one obtains a dataset of intensities
numerated by j and k. The set can be seen as a pixelated

grayscale image from which the parameters d of individual

sinusoids are to be extracted. This can be done automatically.

The subject of automatic determination of d by image-analysis

techniques is beyond the scope of this article, but it is worth

making the following remarks.

It is noted in Dessieux et al. (2023a) that if � = 0, parameters

of sinusoids can be determined using the conventional

Hough transform. In this case, equation (4) simplifies to

�ð’Þ = d1k
S
1 ð’Þ + d2k

S
2 ð’Þ = d1 cos ’ + d2 sin ’. With

xi ¼ xið’; �Þ ¼ kSi ð’Þ=� (i = 1, 2), this relationship takes the

(intercept) form of the equation for a line: d1x1 + d2x2 = 1.

Thus, if the image in coordinates (’, �) is transformed to

coordinates (x1, x2), the curve described by the parametric

equations xið’Þ ¼ kSi ð’Þ=�ð’Þ is a line. In other words, sinu-

soids in the original image become straight lines in the

transformed image. Since values of � are positive, the image

space (x1, x2) is bounded, so lines in the image can be detected

using Hough transform.3 The question arises about an

analogous procedure in the case of 0 < � < �/2. With such �,
equation (4) can be written as d1x1 + d2x2 + d3x3 = 1, where

xi ¼ xið’; �Þ ¼ kSi ð’Þ=� (i = 1, 2, 3). Thus, the curve described

by the parametric equations xið’Þ ¼ kSi ð’Þ=�ð’Þ in three-

dimensional space belongs to a plane. Formally, the problem

of determining d comes down to detecting planar features in

three-dimensional image space, and there are algorithms for

that (e.g. Sarti & Tubaro, 2002; Bauer & Polthier, 2008;

Limberger & Oliveira, 2015). However, with limited wave-

length windows and diffraction patterns containing only parts

of sinusoids, the planar curves in the three-dimensional image

space are short and such detection is unlikely to work in

practice.

Parameters of the sinusoids can be determined using other

methods. There are numerous dedicated algorithms for

detection of sinusoids of fixed period in digital images. Typical

sinusoid detection methods rely on Hough transform modified

to find sinusoids rather than straight lines (Thapa et al., 1997;

Glossop et al., 1999). These searches are exhaustive but

computationally expensive. Therefore, alternative approaches

avoiding the Hough transformation have also been proposed;

see, e.g., Moran et al. (2020), Dias et al. (2020) and Sattarzadeh

et al. (2022). Sinusoid detection can be difficult due to inter-

sections and overlapping of the curves. Moreover, only some

of the algorithms for detection of sinusoids are applicable to

images obtained from transmission spectra because fragments

of sinusoids are missing from the images due to the wave-

length window.

A simple way to determine d is to detect the position of a

dip in a spectrum for a selected ’j, then check the continuity of
the sinusoid in the adjacent spectra at ’j
1, and use (8) to get

an approximate d. Knowing the approximate d, spectra at
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Figure 2
Schematic geometry of the experimental setup with the sample rotation
axis inclined to the neutron beam direction.

3 With Duda–Hart parameters (�, �) of a line and the expression
� ¼ x1 cos � þ x2 sin � usually used for performing Hough transform (Duda &
Hart, 1972), the first two components of d are d1 ¼ cos �=� and d2 ¼ sin �=�,
and the dependence of the wavelength on the angle ’ takes the form
�ð’Þ ¼ cosð� � ’Þ=�.
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’j
2, ’j
3 etc. are checked for dips to validate this d and

improve its accuracy or discard it and try again. With this

approach, the limitation of changing the angle ’ in equi-

angular steps can be abandoned. One can use an adaptive

selection of ’j depending on the results obtained in the

previous steps. This may reduce the number of sample

orientations needed and shorten the overall measurement

time.

4. Indexing of data obtained with an inclined rotation
axis

4.1. Indexing for orientation determination

By determining d and then g from a sinusoid on an

experimental pattern, one gets a single approximate rela-

tionship Og 	 h with unknown orientation O and h corre-

sponding to one of the plausible reflecting planes. As a

reciprocal-lattice vector, h is an integer combination of known

basis vectors aiC given in the Cartesian reference system

attached to the crystal, i.e., h ¼ P3
i¼1 hia

i
C, where (h1 h2 h3) =

(hkl) are integers. Since there are many, say M, potential

reflecting planes, one has the same number of vectors hm (m =

1, 2, . . . ,M). Given multiple sinusoids, one has multiple, say

N, vectors gn. The goal is to get O and to ascribe some of the

vectors hm to vectors gn. One can express the relationship

between the sets of vectors gn and hm as

OG 	 HP; ð9Þ
where G ¼ ½g1 g2 . . . gN �, H ¼ ½h1 h2 . . . hM� and P is an

unknown M � N matrix with zero entries everywhere except

the values of 1 at entries mn such that hm corresponds to gn.

The point is to determine O and P. The matrix O solves the

orientation determination problem and P solves the index

assignment problem. This formulation is the same as in other

cases of indexing for crystal orientation determination; see

Morawiec (2020, 2022). Therefore, the problem can be solved

automatically using any reasonably general software for

crystal orientation determination.

4.2. Ab initio indexing

Knowing a number of reciprocal-lattice vectors gn, one can

determine parameters of the crystal lattice. For each vector,

one has

gn � aSi 	 hni ; ð10Þ
where ðhn1 hn2 hn3Þ ¼ ðhn kn lnÞ are unknown integers and aSi (i =

1, 2, 3) are unknown basis vectors of the direct lattice in the

sample reference frame. Solving the above problem (i.e.,

determining the vectors aSi and the indices h
n
i ) is the essence of

ab initio indexing. It can be performed using one of the

programs designed for diffraction data; see, e.g., Duisenberg

(1992) or Morawiec (2017, 2022). One needs to note that

software for ab initio indexing usually proposes multiple

solutions, and the choice of the ultimate solution is left to the

user.

The related problem of the refinement of lattice parameters

also relies on equation (10). The task is to determine the direct

lattice basis vectors aSi from the known vectors gn and their

indices hni (n = 1, 2, . . . , N). Using the 3 � N matrix ~H with

the integer entries ~Hin ¼ hni , equation (10) can be written in

the form GT ½aS1 aS2 aS3 � 	 ~HT , and one looks for the best

matching matrix ½aS1 aS2 aS3 �. The least-squares solution to the

problem can be written as

½aS1 aS2 aS3 � ¼ ð ~HGþÞT :
Such refinement is usually the final operation of ab initio

indexing. Needless to say, the above formula is also the basis

for determining elastic strain tensors.

4.3. Compliance check

The proposed strategy of data analysis comes down to the

following: Based on the coordinates (’, �) of points of a

sinusoid, its parameters d are calculated using (8), and then

the corresponding reciprocal-lattice vector g is obtained from

(5). This step is repeated for several sinusoids. The thus-

obtained set of reciprocal-lattice vectors gn (n = 1, 2, . . . , N)
allows for the determination of crystal orientation or

lattice parameters using existing indexing software. The

practical usefulness of the strategy will depend on the accu-

racy of the gn vectors. The lower the accuracy, the more

difficult the indexing. While indexing ideal data is straight-

forward, it is worth confirming that the scheme for determi-

nation of the gn vectors is consistent with the indexing

procedures.

To illustrate the consistency test, data from the window

shown in Fig. 3 are used. Wavelengths of eight deepest dips in

spectra for ’ = 30�, 60� and 90� were calculated. Based on

equations (6), eight vectors gn were obtained. These vectors

were input to the orientation determining program KiKoCh2

(Morawiec, 2020). The resulting orientation was ð1 2 3Þ½6 3 4�,
which is symmetry-equivalent to the original variant of the S

orientation. The same set of gn vectors was used as input to the

program Ind_X (Morawiec, 2017) to test ab initio indexing.

With suitably chosen parameters of Ind_X, the program
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Figure 3
Pattern in the wavelength window 0.5–4.2 Å and ’ in the range from 0 to
120�. This is a part of the pattern shown in Fig. 1(a). Red discs mark
points of the eight sinusoids used for the compliance check.
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provided a primitive lattice cell which, after application of

LEPAGE (Spek, 1988), led to the conventional face-centered-

cubic cell with a = 3.613 Å.

Summarizing, in both cases (indexing for orientation

determination and ab initio indexing), the data used to simu-

late the pattern were recovered, which means that the

compliance tests confirmed the suitability of the proposed

strategy.

5. Concluding remarks

Wavelength-resolved neutron imaging can be used for char-

acterization of crystal lattices. Attenuation of the transmitted

beam caused by diffraction leads to Bragg dips in transmission

spectra at positions corresponding to diffraction reflections. If

spectra are collected at different sample orientations, the

positions of the dips provide a basis for determination of the

crystal orientation and lattice parameters. The simplest way to

change the sample orientation is by stepwise rotation about a

fixed axis with a spectrum recorded at each step. The resulting

pattern of intensities depends on the rotation angle and the

wavelength and contains characteristic sinusoids. Each sinu-

soid represents the dependence of the wavelength on the

angle of rotation for reflections from a crystal plane. The

sinusoid can be used for determination of coordinates of the

reciprocal-lattice vector corresponding to the plane. Crystal

orientations and lattice parameters are determined from sets

of such vectors.

The usual approach is to rotate the sample about an axis

perpendicular to the beam direction. However, it is shown

above that the rotation about such an axis is not optimal for

determination of the reciprocal-lattice vectors from the sinu-

soids. A reciprocal-lattice vector can be uniquely determined

from coordinates of points of the corresponding sinusoid only

if the rotation axis is inclined to the beam direction. It is also

shown that having a set of such vectors, one can compute the

crystal orientation or lattice parameters using existing

indexing software.

The above considerations concern patterns composed of

multiple spectra obtained from a single crystal, but the results

presented are also relevant for indexing individual spectra,

and also for orientation mappings of multigrain samples.

Moreover, the considerations are focused on the configuration

with a fixed axis of sample rotation, but they can be general-

ized to indexing of data obtained from spectra collected at

arbitrarily set sample orientations.

This article covers only theoretical aspects of determination

of lattice geometry from neutron transmission spectra and

ignores experimental issues. It should be noted that on the

experimental side, the key to accurate reciprocal-lattice

vectors is the wavelength resolution. Neutron time-of-flight

spectra are characterized by a high density of peaks at short

wavelengths (i.e., at the bottom of patterns of sinusoidal

curves), and sufficiently high resolution is needed to resolve

the peaks and to get their positions.

APPENDIX A
Indexing Bragg dips in a single spectrum

A simple approach to indexing Bragg dips in individual

spectra is based on the use of a cutoff wavelength equal to

double the interplanar spacing of a family of reflecting planes

(Santisteban, 2005; Shishido et al., 2023): if a dip is at a

wavelength larger than the cutoff wavelength of a family, it

must be due to reflection from a stack of planes with larger

spacing. This helps in determining the indices of the first dip at

the largest wavelengths. The remaining dips are indexed by

considering orientations rotated about an axis perpendicular

to the stack of planes responsible for the first dip. Forward

indexing has also been used for analyzing individual spectra

(Sato et al., 2017): the wavelengths of dips were computed for

a grid over the domain of transmitted beam directions, and the

beam direction was determined by matching the experimental

spectrum to these simulated data.

Bragg dips can be indexed by other methods suitable for

automation. The most robust ones are based on accumulation

of contributions from some primitive configurations. Such

methods are used for feature extraction from data (e.g. Hough

transform) and also in indexing for orientation determination

(Ohba et al., 1981; Morawiec, 2022). A simple algorithm of this

type (with pairs of Bragg dips voting for beam directions) is

sketched below. For this purpose, one needs a formula for

computing the beam direction from positions of two Bragg

dips and corresponding h vectors.

A1. Beam direction from positions and indices of two Bragg

dips

The direction of the incident beam in the crystal reference

frame is k̂C ¼ Ok̂S ¼ ORT
’ k̂0, and equation (3) can be written

in the form h � k̂C þ � h2=2 ¼ 0. Relationships

hi � k̂C þ �i h
2
i =2 ¼ 0; i ¼ 1; 2;

between wavelengths �1, �2 and independent vectors h1, h2
plus the normalization condition k̂C � k̂C ¼ 1 constitute a

system of three equations for k̂C. The solution to this system is

k̂C ¼ y� z
 y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y2 � z2

p

2y2
; ð11Þ

where y = h1 � h2, z ¼ �1h
2
1

� �
h2 � �2h

2
2

� �
h1 and 4y2 � z2.

Thus, if the dips at �1 and �2 are due to h1 and h2, respectively,

the beam direction is along one of the vectors given by

equation (11). Clearly, if the pairs �1, h1 and �2, h2 are

exchanged, one obtains the same vectors k̂C. If vectors h1 and

h2 are replaced by �h1 and �h2, respectively, then y remains

unchanged and z changes to �z. Hence, if the pair h1 and h2
leads to the pair of vectors k̂C given by equation (11), �h1 and

�h2 lead to the pair of opposite vectors.

A2. Voting for beam direction

Indexing of Bragg dips in a single spectrum based on a

known crystal lattice is equivalent to determination of the

transmitted beam direction in the crystal coordinate system.

The algorithm for determination of the beam direction can be
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analogous to one of those used for orientation determination

(Morawiec, 2022). One knows the positions of dips �k (k =

1, 2, . . . , K). Knowing lattice parameters and families of

reflecting planes, one has the reciprocal-lattice vectors hm (m =

1, 2, . . . ,M). The domain of the beam direction depends on

the crystal point symmetry (e.g. in the cubic case it is the

standard triangle). The domain constitutes the parameter

space. In the simplest approach, the space is divided into bins.

The first step is to set the counters assigned to the bins to zero.

The main computations are based on loops over all pairs of

wavelengths ð�k1 ; �k2 Þ, and over all pairs of independent

vectors ðhm1
; hm2

Þ. For given ð�k1 ; �k2 Þ and ðhm1
; hm2

Þ, using
equation (11), one obtains a pair of k̂C vectors or no solution;

in the former case the counters of the bins containing k̂C are

increased by 1. As a result of these computations, the counters

assigned to the bins take on new values. The vector ĵC

corresponding to the bin with the largest counter is the beam

direction. In the end, it is worth refining ĵC by fitting dip

positions.

Application of the above scheme to experimental

dip positions listed in Table 1 of Santisteban (2005) led

to ĵC ¼ ½0:7407 0:6717 0:0142�T [2.9� away from h1 1 0i
declared in Santisteban (2005)]. The root-mean-square

deviation between the experimental and computed positions

was 2.4 � 10�4 Å.

A3. Crystal orientation from beam directions

The beam directions obtained by indexing individual

spectra can be used for further crystallographic analyses. For

instance, they can be a basis for orientation determination:

with J (J � 3) distinct transmission spectra indexed, one has

the same number of resulting beam directions ĵC
j (j =

1, 2, . . . , J), each reduced to the domain used in the indexing

procedure. The direction ĵC
j is equivalent to SĵC

j , where the

matrix S represents a symmetry operation from the crystal

point group. For each pair ĵC
j and k̂Sð’jÞ, there exists an

operation Sj such that these vectors are related by

Sjĵ
C
j 	 Ok̂Sð’jÞ. First, one needs to determine the operations

Sj based on the fact that the vectors k̂Cj ¼ Sjĵ
C
j consistent with

k̂Sð’jÞ satisfy the relationships k̂Cj1 � k̂Cj2 	 k̂Sð’j1 Þ � k̂Sð’j2 Þ for j1
and j2 in {1, 2, . . . , J}. Clearly, the result is not unambiguous: if

vectors k̂Cj satisfy these relations, then the vectors �k̂Cj also

satisfy them. With KC ¼ ½k̂C1 k̂C2 . . . k̂
C
J �, KS defined in Section

3.2 and k̂Cj 	 Ok̂Sð’jÞ, one has KC 	 OKS. Hence, if 0 < � <

�/2, the crystal orientation is

O 	 SOðKCK
þ
S Þ;

where SOðAÞ denotes the special orthogonal matrix nearest

to the matrix A.4 The choice between KC ¼ ½k̂C1 k̂C2 . . . k̂
C
J �

and KC ¼ �½k̂C1 k̂C2 . . . k̂
C
J � is resolved by the condition

detðKCK
þ
S Þ> 0.

With a slight modification, the above approach can be used

to obtain orientations from data collected with the crystal

rotation axis perpendicular to the beam direction (� = 0). The

choice of the symmetry operations Sj needed to get k̂Cj ¼ Sjĵ
C
j

is resolved by comparing the angles between k̂Cj1 and k̂Cj2 to

’j1 � ’j2 [as vectors k̂
C
j consistent with k̂Sð’jÞ satisfy the rela-

tionship k̂Cj1 � k̂Cj2 	 cosð’j1 � ’j2 Þ]. Since the third components

of the vectors k̂Sð’jÞ are zero, the third column of Kþ
S is zero,

and in effect the third column of KCK
þ
S is zero, i.e., KCK

þ
S has

the form [q1 q2 0]. The first two columns of KCK
þ
S

approximate the first two columns of O. Since the matrix

O is special orthogonal, its third column is the vector

product of its first and second columns. Thus, the

crystal orientation is O 	 SOð½q1 q2 q1 � q2�Þ. With

KC ¼ �½k̂C1 k̂C2 . . . k̂
C
J �, one obtains the second possible orien-

tation SOð½�q1 � q2 q1 � q2�Þ 	 OC. This is another expo-

sition of the two-way ambiguity in determining orientation

when � = 0.
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