
electronic reprint

ISSN: 1600-5767

journals.iucr.org/j

On the magnitude of error in the determination of rotation
axes

Adam Morawiec

J. Appl. Cryst. (2024). 57, 1059–1066

IUCr Journals
CRYSTALLOGRAPHY JOURNALS ONLINE

Author(s) of this article may load this reprint on their own web site or institutional repository and on
not-for-profit repositories in their subject area provided that this cover page is retained and a permanent
link is given from your posting to the final article on the IUCr website.

For further information see https://journals.iucr.org/services/authorrights.html

J. Appl. Cryst. (2024). 57, 1059–1066 Adam Morawiec · On the magnitude of error in the determination of rotation axes

https://journals.iucr.org/j/
https://doi.org/10.1107/S1600576724004692
https://journals.iucr.org/services/authorrights.html
https://crossmark.crossref.org/dialog/?doi=10.1107/S1600576724004692&domain=pdf&date_stamp=2024-07-04


research papers

J. Appl. Cryst. (2024). 57, 1059–1066 https://doi.org/10.1107/S1600576724004692 1059

ISSN 1600-5767

Received 2 February 2024

Accepted 20 May 2024
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Rotation axes (together with rotation angles) are often used to describe crystal

orientations and misorientations, and they are also needed to characterize some

properties of crystalline materials. Since experimental orientation data are

subject to errors, the directions of the axes obtained from such data are also

inaccurate. A natural question arises: given the resolution of input rotations,

what is the average error of the rotation axes? Assuming that rotation data

characterized by a rotation angle ! deviate from the actual data by error

rotations with fixed angle � but which are otherwise random, the average error

of the rotation axes of the data is expressed analytically as a function of ! and �.
A scheme for using this formula in practical cases when rotation errors � follow
the von Mises–Fisher distribution is also described. Finally, the impact of crystal

symmetry on the determination of the average errors of the axis directions is

discussed. The presented results are important for assessing the reliability of

rotation axes in studies where the directions of crystal rotations play a role, e.g.

in identifying deformation slip mechanisms.

1. Introduction

Various rotation parameterizations are used to describe the

orientations and misorientations of crystallites. Texture

calculations often rely on parameters that are difficult to

interpret directly, but in interpersonal communication, orien-

tations and misorientations are usually expressed in terms of

easily interpreted rotation axes and rotation angles. A rotation

axis consists of points invariant under the rotation. Knowing

the axis direction may give insight into the physics of the

process causing the rotation. The directions of the rotation

axes are explicitly specified to determine some material

characteristics. For instance, they are key to establishing slip

systems active during plastic deformation or, more generally,

to investigating cumulative motions of dislocations leading to

macroscopic rotations of crystal lattices. Also, the criteria for

classifying grain boundaries are based on the directions of the

rotation axes. Some orientation distributions are axial, i.e.

crystal orientations are related by rotations about a specific

axis. The issue of determining and interpreting rotation axes

often appears in studies on crystallographic texture [see e.g.

Prior (1999), Cross & Randle (2003), Reddy & Buchan (2005),

Chun et al. (2010), Yamasaki et al. (2013), Jeyaraam et al.

(2019) and Li et al. (2022)].

Experimental orientation data are subject to errors, and the

magnitudes of these errors are characteristic of the individual

orientation measurement techniques. The orientation resolu-

tion typically ranges from hundredths of a degree to several

degrees. For standard electron backscatter diffraction (EBSD)

orientation mappings, it is usually reported to be about 0.5–

1.0� (Godfrey et al., 2002; Bate et al., 2005; Morawiec et al.,
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2014). Tilting a crystal by several degrees may be needed to

detect a change in a transmission electron microscopy spot

diffraction pattern. The magnitudes of the errors for some

non-diffraction techniques can be quite large; the orientation

resolution of the metallographic etch-pitting technique is of

the order of 10�.
For simplicity, the text below refers to errors affecting

single-crystal orientation measurements, but it can also be

reformulated in terms of the features of texture. Orientation

data obtained from polycrystalline materials are usually

reduced to texture components with component-defining

central orientations and some component spreads. The spread

of a component can be viewed as a measure of deviations from

the central orientation.

The rotation axes obtained from error-affected orientation

data are also inaccurate and inferences based on such axes

become uncertain. A question arises about the magnitudes of

the errors in determining the axis directions. This problem is

the subject of consideration below. A correction is made to the

hitherto used expression, originally presented as a formula for

the average error in the axis direction. In parallel, a formula

for the maximum error in the axis direction is given. A scheme

is also presented for estimating the average error in the axis

direction in the case where the rotation errors have the

spherical von Mises–Fisher distribution. Since symmetry

complicates the determination of axis directions, the oppor-

tunity is taken to clarify the issue of the average error in axis

direction for rotations representing orientations and mis-

orientations of symmetric crystals.

The remainder of this paper is organized as follows. The

next section recalls some basic facts about rotations. Section 3

discusses average deviations of rotation axes for rotation

errors of fixed magnitude. Then, in Section 4, the case of

distributed magnitudes of rotation errors is briefly considered.

The issue of the influence of crystal symmetry on determining

the average error of a rotation axis is discussed in Section 5.

2. Basics

Throughout this paper, it is assumed that the crystal point

group contains inversion, and considerations are limited to

proper rotations. The orientation of a crystal is described by a

rotation that transforms a crystal reference frame into an

established sample reference frame. The misorientation

between two crystals is represented by a rotation that trans-

forms the reference frame of the first crystal into the frame of

the second crystal.

Interest in the axes of rotations is often associated with

research on misorientations between crystals of the same type.

The axis and angle of the rotation associated with a mis-

orientation are usually referred to as the misorientation axis

and misorientation angle, respectively. Misorientation axes are

usually specified with respect to the crystal reference frame by

the indices of their directions.

In the case of orientations, axis directions are important

when orientation-dependent changes need to be coupled to

external forces, stimuli or constraints (e.g. for understanding

plastic deformation of polycrystals, it is important to know the

link between the axes of the grain rotations and the stresses

applied to the specimen). The rotation axes for orientations

are frequently specified with respect to the sample reference

frame.

As a side note, it is worth mentioning misorientations

between crystals of different phases. Interpretation of such

misorientations is complicated by the fact that a change in the

setting of the crystal coordinate system in one of the phases

changes the null misorientation, i.e. the latter is not unique.

However, as in the case of single-phase materials, mis-

orientation axes have the same fundamental meaning: when

one crystal rotates with respect to the other, the axis of

rotation is along the direction invariant in both crystals.

With k being a unit vector along the rotation axis and !
denoting the rotation angle, the pair (k, !) uniquely identifies
the right-hand rotation. It is clear that with n denoting an

integer, (k, !), (k, ! + 2n�) and (�k,�! + 2n�) represent the
same rotation. To limit these ambiguities, the domain of the

rotation parameters needs to be specified. The most conve-

nient, natural and commonly used is the one which consists of

rotations closest to the null rotation I (i.e. rotation by the

angle ! = 0). With this domain, the angles of rotations are non-

negative and do not exceed �, and the vectors k cover the

complete unit sphere. In the case of half-turns, the axes are

still ambiguous: (k, �) and (�k, �) represent the same rota-

tion. The parameterization by (k, !) is also singular at the

point I, for which the axis is arbitrary.1 The point I corresponds

to the case of no rotation and is ignored here; it is assumed

that the angles of all rotations are positive, i.e. 0 < ! � �. The
choice of the domain of the parameters (k, !) is essential for
the considerations presented below. It is assumed that all

analysed axis/angle parameters are in the described domain.

The deviation � between axes along k and k0 is defined as

the angle between these vectors, i.e. � = arccosðk � k0Þ. Angles

appearing in theoretical expressions are in radians, while in

practical circumstances, angles are expressed in degrees.

3. Axis deviations for rotation errors of given magni-
tude

Let � denote the angular distance between the measured (i.e.

approximate) rotation g0 ’ (k0, !0) and the true rotation g ’
(k, !) of an object with no symmetry other than invariance

with respect to inversion. With the special orthogonal matrices

representing the rotations denoted by the same symbols as the

rotations themselves, one has � ¼ arccosf½Trðg0g�1Þ � 1�=2g.
Given a fixed � (0 < � � �), the following formal question

arises: assuming the error rotations g0g�1 ’ (h, �) have

random axes, what is the average of the angle � between the

axes of g and g0? With vectors h uniformly distributed over

the unit sphere S2 (and the remaining parameters fixed), the

angle � depends on h, i.e. � = �(h), and the average of � is
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1 Some rotation parameterizations are regular at I (e.g. parameterization by
the rotation vector !k). It is known, however, that there is no global singu-
larity-free parameterization of rotations (Stuelpnagel, 1964), i.e. the pair
(k, !) is in this respect no different from other parameterizations.
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h�i =
R
S2
�ðhÞ dh. Clearly, h�i must depend on the rotation

angle ! of g. For ! near zero, the value of h�i is expected to be
large. When g is nearly a half-turn, an error may cause a large

change in axis direction (Fig. 1).

An analytically derived expression intended to answer the

above question was given by Bate et al. (2005). They

concluded that, on average, the axis of the error-affected

rotation is inclined to the true axis by an angle arctanð�=!Þ.
This formula is often referred to in research papers [e.g.

Wilkinson et al. (2006), Brough et al. (2006), Humphreys &

Bate (2007), Farooq et al. (2008), Quey et al. (2010), Wilkinson

& Randman (2010), Gardner et al. (2011) and Ram et al.

(2015)] and PhD theses [e.g.Albou (2010), Renversade (2016)

and Qu (2023)]. However, when deriving the above expres-

sion, it was incorrectly assumed that the average of � as a

function of a variable is equal to the value of the function at

the average of the variable. Therefore, the formula of Bate et

al. does not represent the angle h�i. Moreover, that paper

(Bate et al., 2005) ignores the case of ! � � � �.
Assuming the error rotations have random axes, it can be

shown (see Appendix A) that, with � < ! < � � �, the average
of � is given by

h�ið!; �Þ ¼ �

2

tanð�=4Þ
sinð!=2Þ : ð1Þ

There is also a closed-form expression for h�i covering the

entire range 0 < ! � �, but it is much more complex than (1),

so it is listed in Appendix A.

Closely related to h�i is the maximal angle �max between the

axes of the rotations g and g0. If � < ! < � � �, the maximal

deviation is

�maxð!; �Þ ¼ arccos
cos �� cos!

1� cos!

� �1=2
" #

: ð2Þ

If !� � or !� �� �, then �max = �. The justification for (2) is
provided in Appendix A.

Example plots of the dependence of h�i and �max on ! for

fixed � (= 3�) are shown in Fig. 2. The nature of h�i and �max as

functions of ! in the domain between 0 and � is better seen in

plots for larger �; an example of such a plot is given in Fig. 3.

Values of h�i and �max for selected small error magnitudes are

listed in Table 1. For other numerical estimates of h�i and

�max, see Wilkinson (2001) and Tong et al. (2022).

Clearly, inferences based on axis directions characterized by

large h�i and �max must be avoided. Nothing can be done if !
is close to 0; in this case, the axis directions are unreliable.

Data with ! close to � can be used by taking into account both

the obtained axis direction and the opposite direction.

The parameter � may characterize orientations or misor-

ientations. However, errors in crystallite misorientations are a

consequence of errors in orientation determination. Assuming

that ‘measured’ orientations deviate from (randomly distrib-

uted) true orientations by random errors of fixed magnitude �o
(0 < �o < �/2), the deviations �m between the error-affected
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Figure 1
(a) A scheme illustrating the definition of the angular deviation �
between the axes of rotations. The true rotation g and the deviating
rotation g0 are represented by the rotation vectors !k and !0k0, respec-
tively. (b) An illustration of the case with ! � � � �. The rotation g0
corresponds to !0k0 = (�!0)(�k0) and to (�!0 + 2�)(�k0) = (!0 � 2�)k0,
but the latter point is outside the domain adopted for the rotation vectors.

Figure 2
The average h�i and maximal �max angles between the axes of the actual
and error-affected rotations versus the rotation angle ! for errors of
magnitude � = 3�. The dashed blue curve corresponds to the formula of
Bate et al. (2005).

Table 1
Numerical values of the average and maximal angles between the axes of
the actual and error-affected rotations for � = 0.5, 1.0 and 3.0�.

All angles are in degrees.

� = 0.5 � = 1.0 � = 3.0

! h�i �max h�i �max h�i �max

1.0 22.50 30.00 45.00 180.00 75.00 180.00
2.0 11.25 14.48 22.50 30.00 60.01 180.00
3.0 7.50 9.60 15.00 19.47 45.01 180.00
5.0 4.50 5.74 9.00 11.54 27.01 36.88
7.0 3.22 4.10 6.43 8.22 19.30 25.39
10.0 2.25 2.87 4.51 5.75 13.52 17.48
15.0 1.50 1.92 3.01 3.83 9.03 11.57
30.0 0.76 0.97 1.52 1.93 4.55 5.80
60.0 0.39 0.50 0.79 1.00 2.36 3.00
90.0 0.28 0.35 0.56 0.71 1.67 2.12
150.0 0.20 0.26 0.41 0.52 1.22 1.55
177.0 0.20 0.25 0.39 0.50 1.18 180.00
178.0 0.20 0.25 0.39 0.50 30.93 180.00
179.0 0.20 0.25 0.39 180.00 60.50 180.00

electronic reprint



and true misorientations are in the range from 0 to 2�o and

their average equals

h�mi ¼
sin �o � �o cos �o

sin2ð�o=2Þ
:

This expression was derived by analytically averaging over the

orientations, axes of orientation errors and axes of mis-

orientations. The angle h�mi is well approximated by 4�o/3 up

to relatively large values of �o. Thus, in short, if random

orientations are affected by errors of small magnitude �o, then
the average error of misorientations has a magnitude of about

1.333�o.

4. Axis deviations for ‘randomly’ distributed rotation
errors

With typical experimental orientation or misorientation data,

the magnitude � of the error rotation is not fixed but varies,

and h�i depends on the distribution of �. Given little knowl-

edge of the nature of the rotation errors, their distribution

must be assumed. If the rotation errors follow the unimodal

‘spherically symmetric’ von Mises–Fisher distribution (Khatri

&Mardia, 1977; Prentice, 1986), their axes are random and the

distribution of their angles � is

pð�;b�Þ ¼ Nðb�Þ sinð�=2Þ
sinðb�=2Þ

" #2

exp � sinð�=2Þ
sinðb�=2Þ

" #2( )
; ð3Þ

whereNðb�Þ is the normalization coefficient andb� (0<b� � �) is
the location of the maximum in p; see Appendix B. The

parameter b� uniquely determines the shape of p as a function

of �. An example plot of p versus � is shown in Fig. 4.

With the frequency of occurrence of error magnitudes �
described by p, the ! dependence of the average deviation

h�ip between axes of the true and error-affected rotations is

h�ipð!Þ ¼
Z�
0

h�ið!; �Þ pð�;b�Þ d�: ð4Þ

To compute h�ip(!) one needs h�i(!, �) expressed by the

general formula (7) (Appendix A) covering the range

0 < � � �.
The function h�ip(!) is uniquely determined by b�. Alter-

natively, the functions p and h�ip can be specified using the

average h�ip =
R �
0
� pð�;b�Þ d� instead ofb�. For smallb�, the angle

h�ip is approximately given by h�ip ’ 1:13b�. The reason for

introducing h�ip is as follows. In cases of interest to orienta-

tion-data analyses (h�ip of the order of 1�), with ! sufficiently
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Figure 3
The average h�i and maximal �max angles between the axes of the actual
and error-affected rotations versus rotation angle ! for errors of
magnitude � = 30�. The plot of h�i for 0 < ! � � is drawn using the
formulae listed in Appendix A.

Figure 4
An example distribution p of rotation angles � for rotation errors
following the ‘spherical’ von Mises–Fisher distribution. The maximum of
p is at � = 3�.

Figure 5
The average angle between axes of the actual and error-affected rotations
versus rotation angle ! for error magnitudes � distributed as pð�;b�Þ, with
(a)b� = 3� (blue) and h�ip = 3� (red), and (b)b� = 30� (blue) and h�ip = 30�
(red). For comparison, the graphs of h�i from Figs. 2 and 3 are shown in
panels (a) and (b), respectively, as dashed black curves.
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distant from the ends of its range (say 2h�ip < ! < � � 2h�ip),
the function h�ip(!) is well approximated by h�i(!, h�ip), i.e.
by h�i(!, �) given by (1) with � set to h�ip. Thus, in many

practical situations, h�ip can be estimated using the analytical

expression (1). Example plots of h�ip versus ! are shown in

Fig. 5.

Clearly, with rotation errors scattered according to the von

Mises–Fisher distribution (i.e. a function that is nowhere equal

to zero), the maximal deviation �max equals �.

5. Deviations of axes in the case of symmetric objects

The analysis of Bate et al. (2005) concerned misorientations

between symmetric crystals. However, to account for

symmetry, one needs an approach more subtle than that

proposed by Bate et al. (2005) and followed in Section 3 above.

As a result of crystal symmetry, distinct but equivalent

reference frames can be attached to the crystal and its

orientation can be represented by several different sets of

rotation parameters. In some analyses of symmetric crystals,

symmetrically equivalent representations of their orientations

are distinguished. For instance, this naturally occurs in dealing

with sequences of orientations differing by small-angle rota-

tions: one of the symmetrically equivalent crystal reference

frames is selected to describe the first orientation of the

sequence and then the same frame is used to describe the

subsequent orientations. The choice of the frame in the

subsequent orientations relies on the knowledge that the angle

of its rotation from the previous one is small. Similarly, the

positions of the originally selected reference frame can be

tracked with known sample rotations [see e.g. Prior (1999)].

However, without such prior knowledge, the choice among

equivalent frames is arbitrary. This must be taken into account

in the determination of rotation axes.

One therefore needs to distinguish two cases. The first

involves some explicit or tacit assumptions about the rotations

which make the choice of crystal reference frames unique. In

this case, the symmetry does not play any role and the

approach of Section 3 is applicable.

The rest of this section deals with the second case where the

orientation data are not supplemented with any additional

information or assumptions. Symmetric crystals can be

assigned reference systems in many equivalent ways. In effect,

there are multiple rotations relating the reference frames, and

the rotation parameters are ambiguous. To avoid these

ambiguities, the rotation parameters are limited to suitably

defined domains. This applies to rotations representing both

orientations and misorientations. However, certain features of

misorientation domains differ from those of orientation

domains. Therefore, orientations and misorientations are

considered separately.

5.1. Orientations

To reduce the arbitrariness in the choice of orientation

parameters, data are placed in the ‘fundamental region’ (FR)

such that each internal point of the region represents only one

orientation and points at the boundary of the region have

some equivalent points (also at the boundary); formally, the

FR is a closure of a simply connected domain containing

exactly one representative of each equivalence class. FRs for

orientations can be obtained by Voronoi tessellation of the

rotation space based on points representing (proper) rotations

of the crystal point group (Yeates, 1993; Morawiec, 1997, 2004;

Krakow et al., 2017). A convenient choice for the FR is the

canonical region which contains only representations closest

to the null rotation I, i.e. the region is the Voronoi cell based

on I. Clearly, this definition of the FR encompasses the

domain for rotations described in Section 2.

Let all measured orientation data be in the I-based FR and

let !0 be the angular distance from the point I to the boundary

of the FR, i.e. to a boundary point closest to I. For � and !
small compared with !0, the character of both h�i(!, �) and
�max(!, �) is the same as that without symmetry. When !
exceeds !0 � �, the error may move a rotation from the

I-based Voronoi cell to another cell. In this case, its equivalent

in the FR has a highly deviating axis. Hence, with ! > !0 � �,
the angle � may become large.
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Figure 6
(a) The average angle h�i and (b) the maximal angle �max between the
axes of the actual and error-affected orientations versus rotation angle !
for errors of magnitude � = 3� and cubic crystal symmetry (discs). The
continuous curves correspond to h�i and �max shown in Fig. 2. Unlike the
case illustrated in Fig. 3, where �max = � for ! > �� �, here the angle �max

can be smaller than � for ! > !0� �. The reason is that, generally, the axis
of a rotation located just outside the boundary of the FR is not opposite
to the axis of its equivalent in the FR. This also affects the dependence of
h�i on ! in the range ! > !0 � �.
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Unlike the case without proper symmetry (Section 3), in

which the average and maximal values of � are independent of

the rotation axis k, in the presence of symmetries they depend

on k if ! > !0 � �. Despite this complication h�i and �max can

be well defined over the entire domain of !: they represent,

respectively, the average and the maximum � over all possible

directions of k. The plots of these functions for ! > !0 � �
depend on the shape of the canonical FR which is determined

by the symmetry. Example plots of h�i and �max versus ! for

the cubic symmetry m3m (for which !0 = �/4) are shown in

Fig. 6. Data for the plots were obtained numerically. An

orientation having a given ! and random k and located in the

FR was generated, it was perturbed by a rotation error with

fixed angle � and random axis, the perturbed orientation was

represented in the FR, the vector k0 along the axis was

determined, and the angle � between k and k0 was computed.

For a given !, these steps were repeated 105 and 106 times to

get h�i and �max, respectively.

Summarizing, if the angle ! + � is smaller than !0, the

formulae of Section 3 are applicable. If a rotation representing

an orientation in the FR is close to the boundary of the region,

one needs to take into consideration representations outside

the region.

5.2. Misorientations

As in the case of orientations, one can construct an FR for

misorientations, but unlike with orientations, there are no

canonical conditions that make it unique. The I-based Voronoi

cell cannot be used because there are a number of equivalent

points at exactly the same distance from I.2 If the average of �
were calculated on the basis of points in the FR, the result

would depend on the choice of the region and would vary from

case to case.

It thus follows that, without a priori knowledge enabling the

selection of a specific frame from among equivalent crystal

reference frames, the approach applicable to orientations (i.e.

averaging over data in FRs) and figures analogous to Fig. 6 are

of no practical significance in the case of misorientations, and

the subject of the average error in determining the mis-

orientation axis is not resolved by expressions of type (1) and

(2). Therefore, when encountering the average error in

determining the misorientation axis, one should be aware that

the special case is considered in which reference systems are

selected a priori and crystal symmetry does not play any role.

6. Concluding remarks

Axes of rotation together with rotation angles are the basic

means of describing orientations and misorientations of crys-

tals. Rotation axes are also a tool for studying some properties

of crystalline materials. Crystal orientations are usually

determined with some errors and the question is how these

affect the rotation axes obtained from such data.

With � denoting the angle between the axes of the actual

rotation and its approximation, the average h�i and the

maximal �max are convenient measures of the uncertainty in

the rotation axes. This paper addresses the formal issue of

determining h�i and �max when the rotation data are affected

by random errors of fixed magnitude. Analytical formulae for

h�i and �max as functions of the rotation angle and the error

magnitude are provided. A method for estimating the average

of � in the practical case of rotation errors following the von

Mises–Fisher distribution is also described. These solutions

are applicable in texture-related calculations to estimate the

reliability of rotation axes. In particular, they are crucial to

assessing the accuracy of the axes of small-angle misorienta-

tions, which are of interest in connection with the determi-

nation of Taylor axes and slip systems.

For data obtained from crystalline materials, an additional

factor is the crystal symmetry. It can be ignored only if there

are preconditions enabling selection of a specific reference

frame from among equivalent frames. Otherwise, to avoid

ambiguities, data are reduced to fundamental regions. In the

case of orientations, there is a canonical fundamental region

which consists of minimum-angle rotations, and the average

and maximal � over data in this region are well defined. There

is no canonical choice of fundamental region for misorienta-

tions and therefore there are no simple definitions of the

average or maximal �.

APPENDIX A
The angles hbi and bmax for 0 < x � p

To simplify comparisons with the work of Bate et al. (2005),

most of their notation is retained. The expression (A4) of Bate

et al. (2005) for the angle � (between the axes of the actual and

error-affected rotations) can be written as

�ðhÞ ¼ arccos

�
cosð�=2Þ sinð!=2Þ þ sinð�=2Þ cosð!=2Þ ðk � hÞ½ �.

1� cosð�=2Þ cosð!=2Þ � sinð�=2Þ sinð!=2Þ ðk � hÞ½ �2� �1=2�
;

ð5Þ
where k and h are unit vectors along the axes of the rotation g

and the error rotation g0g�1, respectively. Formula (5) does not

account for the case with ! exceeding � � �, i.e. when the

error-affected rotation is close to a half-turn. At the half-turn,

the error-affected rotation switches axis direction. To take this

into account, one needs to include the index csðhÞ =

sgn cosð�=2Þ cosð!=2Þ � sinð�=2Þ sinð!=2Þ ðk � hÞ½ � as a factor in

front of the argument of arccos in equation (5). This coeffi-

cient results from consistent application of the formulae for

the composition of rotations and definition of the rotation axis.

Due to the homogeneity of the space of rotations, the

dependence of � on h can be explored with any k; this can be

the unit vector along the z axis of the Cartesian coordinate

system. With h specified by spherical coordinates � (polar
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2 An additional complication is the grain exchange symmetry which arises
when crystallites are not distinguished. With the axis/angle parameterization,
the grain exchange symmetry comes down to the equivalence of (k, !) and
(�k, !). This symmetry is usually assumed in analyses of EBSD orientation
maps.
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angle) and � (azimuthal angle), one has k � h ¼ cos �. Thus, for
a given � and !, the angle � depends only on �:

�ð�Þ ¼ arccos

�
csð�Þ½cosð�=2Þ sinð!=2Þ þ sinð�=2Þ cosð!=2Þ cos ��.

1� cosð�=2Þ cosð!=2Þ � sinð�=2Þ sinð!=2Þ cos �½ �2� �1=2�
:

ð6Þ
With a random distribution of h, the average of � is given by

the integral over the unit sphere S2:

h�i ¼
Z
S2

�ðhÞ dh ¼ 1

4�

Z
S2

�ð�Þ sin � d� d� ¼ 1

2

Z�
0

�ð�Þ sin � d�:

The integration can be carried out using software for symbolic

computation. Let

�	1 ð!; �Þ ¼ 1	 cosð�=2Þ cosð!=2Þ
and

�	2 ð!; �Þ ¼�� 2 arccos
�
sinð�=2Þ sinð!=2Þ


 �	1 ð!; �Þ cotð�=2Þ cotð!=2Þ
�
;

where either the lower or the upper sign is used concurrently

on both sides. For 0 < ! < �� � the dependence of the average
of � on ! and � is

h�ið!; �Þ ¼ 1

2
arccos sgnð!� �Þ½ �

þ �

4

sgnð!� �Þ ��1 ð!; �Þ þ �þ1 ð!; �Þ � 2 cosð�=2Þ
sinð�=2Þ sinð!=2Þ ;

ð7Þ
and if ! � � � � then

h�ið!; �Þ ¼ 1

2
arccos sgnð!� �Þ½ � þ �3ð!; �Þ þ �4ð!; �Þ

� sgnð!� �Þ ��5 ð!; �Þ þ �þ5 ð!; �Þ;
ð8Þ

where

�3ð!; �Þ ¼
�

2
� cotð�=2Þ
sinð!=2Þ arcsin cotð�=2Þ cotð!=2Þ½ �;

�4ð!; �Þ ¼
1

2
arccos

cosð�=2Þ
sinð!=2Þ

� 	
� arccos � cosð�=2Þ

sinð!=2Þ
� 	
 �

� cotð�=2Þ cotð!=2Þ;
and

�	5 ð!; �Þ ¼
�	1 ð!; �Þ �	2 ð!; �Þ
4 sinð�=2Þ sinð!=2Þ :

If ! > �, then equation (7) reduces to simple equation (1).

It is easy to obtain the maximal deviation �max. With � < ! <

�� �, the condition d�=d� = 0 for extrema of �(�) is satisfied if

sin � ¼ 0 or sin � sinð!=2Þ cos � þ 2 sin2ð�=2Þ cosð!=2Þ ¼ 0:

The maximum of � corresponds to the second case, i.e. to

cos � = � tanð�=2Þ cotð!=2Þ. Substitution of this cos � into (6)

gives

�maxð!; �Þ ¼ arccos
cos �� cos!

1� cos!

� �1=2
" #

:

If ! � � or ! � � � �, the rotation affected by a random error

of magnitude � may have any axis, so �max = �.

APPENDIX B
Distribution of magnitudes of ‘random’ error rotations

Random measurement errors of physical quantities repre-

sented by real-valued variables are often assumed to have

normal distributions. However, a Gausssian distribution is not

suitable for orientation data. For such data, a convenient

analogue of the (trivariate) normal distribution is the function

described by the von Mises–Fisher distribution for special

orthogonal matrices [see e.g. Khatri & Mardia (1977) and

Prentice (1986)].

The simplest of the von Mises–Fisher type distributions are

unimodal with ‘spherical’ symmetry, i.e. they depend only on

the angular distance � between the variable and the mean and

are independent of the axis of rotation relating these two

points. They are of the form cð�Þ expð� cos �Þ (Khatri &

Mardia, 1977). The invariant volume element on the space of

rotations in axis (h) and angle (�) parameterization is

ð2=�Þ sin2ð�=2Þ d� dh (Miles, 1965). Thus, with a unimodal

‘spherical’ von Mises–Fisher orientation distribution, the

distribution p of the angles � is proportional to

sin2ð�=2Þ expð� cos �Þ. After normalization to 1, it can be

expressed as

pð�;b�Þ ¼ Nðb�Þ qð�;b�Þ exp �qð�;b�Þh i
;

where

qð�;b�Þ ¼ sinð�=2Þ
sinðb�=2Þ

" #2

;
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Figure 7
The average h�ip =

R �
0
� pð�;b�Þ d� versus b� for p given by (3). The dashed

line (tangent to the solid line at 0�) is described by h�ip ¼ 1:13b�.
electronic reprint



the normalization coefficient is

Nðb�Þ ¼ 1

Q csc2ðb�=2Þ=2h i ;
the function Q is given by

Qð�Þ ¼ � � exp ð��Þ I0ð�Þ � I1ð�Þ
� �

;

and In is the modified Bessel function of the first kind and

order n. The distribution p can be specified using the location

of its maximum b� (0<b� � �) or the average h�ip =R �
0
� pð�;b�Þ d�. The numerically determined one-to-one rela-

tionship of h�ip to b� is shown in Fig. 7.
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