Wytwarzanie i charakteryzacja struktur plazmonicznych do zastosowań w fotowoltaice :: Instytut Metalurgii i Inżynierii Materiałowej Polskiej Akademii Nauk

Wytwarzanie i charakteryzacja struktur plazmonicznych do zastosowań w fotowoltaice

Uwaga, otwiera nowe okno. PDFDrukuj

Elaboration and characterization of plasmonic nanostructures for photovoltaic applications

Zbigniew Starowicz


Streszczenie

Nowoczesne ogniwa słoneczne coraz częściej łączą w swojej architekturze zmniejszenie zużycia materiałów fotoaktywnych ze zwiększeniem wydajności energetycznej, celu redukcji kosztów pozyskania energii słonecznej. Wraz ze zmniejszeniem grubości ogniw, w technologiach cienkowarstwowych i nowych koncepcjach ogniw opartych o nanomaterialy nie istnieje już możliwość zastosowania znanych do tej pory sposobów zmniejszania strat optycznych, jak teksturyzacja powierzchni czy warstwy antyrefleksyjne. Konieczne jest wykorzystanie nowych materiałów i struktur umożliwiających związanie światła z obiektami w nono skali. Takie możliwości dają struktury plazmoniczne metali.

Celem niniejszej pracy było opracowanie i wykonanie w oparciu o nanocząstki srebra struktur plazmonicznych, które mogłyby zostać zastosowane w ogniwach słonecznych. Podstawowymi zjawiskami, które powodują zasadność stosowania takich struktur są silne rozpraszanie światła oraz wzmocnienie bliskiego pola elektrycznego wokół nanocząstki w warunkach rezonansu plazmonowego. Srebro zostało wybrane jako materiał do badań z uwagi na występowanie rezonansu plazmonowego w istotnym z punktu widzenia fotowoltaiki zakresie długości fali, niską absorpcję własną oraz stosunkową dobrą elastyczność w zakresie kształtowania różnego rodzaju nanostruktur.

W ramach przedstawionej rozprawy szczególny nacisk położono na metody wytwarzania potencjalnie przydatnych dla fotowoltaiki nanostruktur srebra, ich aspekty mikrostrukturalne, jak również wynikające z tego właściwości. Własności plazmoniczne silnie zależą takich parametrów jak wielkość i kształt nanocząstek oraz otocznie, dlatego też wymagana jest dobra kontrola tych parametrów mikrostruktury. Trzy sposoby wytwarzania zostały wybrane, które dodatkowo były wspomagane przez symulacje komputerowe. Były to osadzanie fotochemiczne, technika formowania nanowysp z cienkich warstw (Metal Island Film, MIF) oraz osadzanie z koloidów poprzez elektrostatyczne samoorganizowanie.

W trakcie realizacji pracy wykorzystano metody badawcze w celu scharakteryzowania mikrostruktury nanocząstek i struktury badanych materiałów (SEM, AFM, TEM, XRD, XPS, spektroskopia Ramanowska i w podczerwieni) oraz w celu określenia parametrów optoelektronicznych (elipsometria, odbicie, charakterystyka I-V, EQE). Istotne postępy w zrozumieniu podejmowanego zagadnienia wniosły symulacje komputerowe umożliwiające określenie interakcji nanocząstek ze światłem.

W aspekcie metody fotochemicznej wynikiem niniejszej rozprawy było opracowanie warunków osadzania małych nanocząstek srebra na podłożu dwutlenku tytanu. Średnia wielkość nanocząstek była poniżej 50 nm, która zmieniała się wraz ze zmianą stężenia prekursora srebra oraz intensywności światła laserowego. Głównym cechą tych nanocząstek było silnie wzmocnienie bliskiego pola elektrycznego. Przewidziano możliwość wykorzystania tego rodzaju cząstek w ogniwach organicznych. W metodzie MIF badano parametry nanoszenia i obróbki cieplnej warstw Ag jako czynników kształtujących mikrostrukturę nanowysp. Główny nacisk położono jednak na koncepcje zastosowania nanocząstek na przedniej powierzchni ogniwa. Dla tej konfiguracji za pomocą symulacji komputerowych opracowano optymalny rozmiar nanocząstek oraz pokrycie powierzchni. Następnie zbadano proces adsorpcji nanocząstek z suspensji koloidalnych. Zmierzone własności otrzymanych układów poddano ponownej analizie metodami symulacji komputerowych. Finalnym efektem było zastosowanie nanocząstek w krzemowych ogniwach słonecznych, uzyskując najwyższą jak dotąd poprawę prądu ogniwa uzyskanego dla struktur otrzymanych tą metodą.


Abstract

Modern solar cells in their architecture more often combine the reduced amount of photoactive materials with increased energy conversion efficiency, in order to minimized the cost of solar energy. With the reduction of cell thickness in the thin-film technologies and new concepts of cells, based on nanomaterials, it is no longer possible to use heretofore known methods, such as surface texturisation or antireflection coatings, for reducing the optical losses. It is necessary to elaborate new materials and structures for coupling of light with objects in nonoscale. Such capabilities provide plasmonic metal structures.

The aim of this work was to develop and execute plasmonic structures based on silver nanoparticles that could be applied in solar cells. Basic phenomena that cause the validity of the use of such structures are strong light scattering and strengthening the near electric field around the nanoparticle at the surface plasmon resonance conditions. Silver was selected due to the occurrence of plasmon resonance in the significant from the point of view of photovoltaic wavelengths range, low parasitic absorption and good flexibility of fabrication of various types of nanostructures.

Within the presented dissertation a special emphasis was put on the methods of producing silver nanostructures potentially useful in photovoltaics and their microstructural aspects, as well as the resulting properties. Plasmonic properties strongly dependent on parameters such as the size and shape of the nanoparticles and the local environment, therefore, good control of these microstructure parameters is highly required. Three methods of preparation have been selected, which were additionally assisted by computer simulations. These were the photochemical deposition, nanoisland formation from the thin layers (Metal Island Film, MIF) and the deposition from colloids by electrostatic self-assembly process.

During the work the various research methods were used to characterize the microstructure of nanoparticles collections and structure of tested materials (SEM, AFM, TEM, XRD, XPS, Raman and infrared spectroscopy) as well as to determine optoelectronic properties (ellipsometry, UV-VIS-NIR spectroscopy, I-V characteristics, EQE). Significant progress in understanding the research field and connected issues were enabled by computer simulations for specifying the interaction of nanoparticles with light.

In terms of the photochemical methods result of this work was determination of conditions for embedding small silver nanoparticles on the surface of titanium dioxide. The average size of the nanoparticles is below 50 nm, which is changed with the change of concentration of the precursor of silver and the intensity of the laser light. The main feature of these nanoparticles was strongly strengthening short electric field. The possibility of using this kind of organic particles in the cells. Within the MIF method the deposition parameters of the Ag layers were studied as factors influencing the microstructure of resulted nanoislands. However, the main emphasis was on concept of application of nanoparticles on the front surface of the cell. For this configuration, the optimal size of the nanoparticles and surface coverage were investigated using computer simulations. Then the process of adsorption of nanoparticles from colloidal suspensions were investigated. The measured properties of obtained samples were used to re-define computer simulations taking into account actual features analyzed systems. The final result was the application of nanoparticles in silicon solar cells, yielding the highest heretofore improvement of the cell current response for structures obtained by this method.

 

Recenzja prof. Z. Bieleckiego

Recenzja prof. D. Kaczmarek